首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 Python数据分析与大数据处理从入门到精通
内容
作者简介
  
目录
篇 Python程序设计
章 Python入门 3
1.1 Python概述 4
1.2 搭建Python开发环境 6
1.3 Python开发工具介绍 11
1.4 Python软件包的管理 13
1.5 实训:编写“Hello World” 15
本章小结 16
第2章 Python基础 17
2.1 变量 18
2.2 标识符 24
2.3 代码组织 26
2.4 输入与输出 28
2.5 运算符与优先级 30
2.6 新手问答 30
2.7 实训:设计一个简易计算器 31
本章小结 31
第3章 数据类型与流程控制 32
3.1 数字类型 33
3.2 字符串类型 37
3.3 集合类型 40
3.4 流程控制语句 45
3.5 新手问答 47
3.6 实训:设计算法,输出乘法表 49
本章小结 50
第4章 函数、模块、包 51
4.1 自定义函数 52
4.2 函数参数 55
4.3 函数式编程 58
4.4 模块与包 63
4.5 新手问答 65
4.6 实训:设计算法,对列表进行排序 67
本章小结 68
第5章 面向对象的程序设计 69
5.1 面向对象 70
5.2 自定义类 71
5.3 属性 73
5.4 方法 79
5.5 类的继承 83
5.6 可调用对象 86
5.7 不可变对象 87
5.8 新手问答 88
5.9 实训:设计算法,构造一棵二叉树 90
本章小结 92
第6章 不错主题 93
6.1 生成器 94
6.2 迭代器 96
6.3 异步处理 97
6.4 错误、调试 103
6.5 新手问答 108
6.6 实训:使用多进程技术统计数据并汇总 109
本章小结 110
第2篇 数据采集与数据清洗
第7章 网络数据采集 113
7.1 HTTP请求概述 114
7.2 XPath网页解析 114
7.3 Scrapy数据采集入门 119
7.4 Scrapy应对反爬虫程序 126
7.5 CrawlSpider类 131
7.6 分布式爬虫 132
7.7 新手问答 136
7.8 实训:构建百度云音乐爬虫 136
本章小结 139
第8章 数据清洗 140
8.1 数据清洗的意义 141
8.2 数据清洗的内容 141
8.3 数据格式与存储类型 142
8.4 数据清洗的步骤 145
8.5 数据清洗的工具 147
8.6 新手问答 151
8.7 实训:清洗百度云音乐数据并储存到CSV  151
本章小结 152
第3篇 数据分析与可视化
第9章 NumPy数值计算 155
9.1 NumPy基础 156
9.2 形状操作 164
9.3 副本、浅拷贝和深拷贝 166
9.4 不错索引 168
9.5 排序统计 171
9.6 新手问答 173
9.7 实训:销售额统计  174
本章小结 175
0章 Matplotlib可视化 176
10.1 图形的基本要素 177
10.2 绘图基础 177
10.3 设置样式 186
10.4 图形样例 189
10.5 新手问答 198
10.6 实训:营业数据可视化 199
本章小结 201
1章 Pandas统计分析 202
11.1 Pandas数据结构 203
11.2 基础功能 210
11.3 统计分析 217
11.4 时间数据 229
11.5 数据整理 231
11.6 不错功能 234
11.7 读写MySQL数据库 236
11.8 新手问答 237
11.9 实训:成绩分析 237
本章小结 239
2章 Seaborn可视化 240
12.1 Seaborn概述 241
12.2 可视化数据关系 242
12.3 根据数据分类绘图 246
12.4 单变量与双变量 251
12.5 线性关系 256
12.6 新手问答 258
12.7 实训:成绩分析可视化 258
本章小结 260
第4篇 大数据存储与快速分析篇
3章 Hadoop数据存储与基本操作 263
13.1 Hadoop概述 264
13.2 Hadoop数据存储与任务调度原理 268
13.3 Hadoop基础环境搭建 273
13.4 Hadoop部署模式 294
13.5 Hadoop常用操作命令 298
13.6 新手问答 300
13.7 实训:动手搭建Hadoop集群环境 301
本章小结 309
4章 Spark入门 310
14.1 Spark概述 311
14.2 Spark核心原理 312
14.3 Spark基础环境搭建 315
14.4 Spark运行模式 317
14.5 新手问答 321
14.6 实训:动手搭建Spark集群 322
本章小结 323
5章 Spark RDD编程 324
15.1 RDD设计原理 325
15.2 RDD编程 328
15.3 键值对RDD 335
15.4 文件读写 340
15.5 编程进阶 342
15.6 新手问答 347
15.7 实训:统计海鲜销售情况 348
本章小结 350
6章 Spark SQL编程 351
16.1 Spark SQL概述 352
16.2 创建DataFrame对象 360
16.3 DataFrame常用API 364
16.4 保存DataFrame 370
16.5 新手问答 372
16.6 实训:统计手机销售情况 373
本章小结 375
7章 Spark流式计算编程 376
17.1 流计算简介 377
17.2 Discretized Stream 379
17.3 Structured Streaming 385
17.4 新手问答 397
17.5 实训:实时统计贷款金额 397
本章小结 398
第5篇 项目实战篇
8章 分析电商网站销售数据 401
18.1 目标分析 402
18.2 数据采集 405
18.3 数据分析 411
本章小结 416
9章 分析旅游网站数据 417
19.1 目标分析 418
19.2 数据采集 420
19.3 数据分析 425
本章小结 429
第20章 分析在售二手房数据 430
20.1 目标分析 431
20.2 数据采集 434
20.3 数据分析 440
本章小结 446
附录:Python常见面试题精选 447
主要参考文献 450
内容推荐
本书主要讲解数据分析与大数据处理所需的技术、基础设施、核心概念、实施流程。从编程语言准备、数据采集与清洗、数据分析与可视化,到大型数据的分布式存储与分布式计算,贯穿了整个大数据项目开发流程。本书轻理论、重实践,目的是让读者快速上手。第1篇首先介绍了Python的基本语法、面向对象开发、模块化设计等,掌握Python的编程方式。第2篇介绍了网络数据采集、数据清洗、数据存储等技术。第3篇介绍了Python常用的数据分析工具,扩展了更多的数据清洗、插值方法,为最终的数据可视化奠定基础。第4篇是大数据分析的重点。首先介绍了Hadoop的框架原理、调度原理,MapReduce原理与编程模型、环境搭建,接着介绍了Spark框架原理、环境搭建方式,以及如何与Hive等第三方工具进行交互,还介绍了最新的结构化流式处理技术。第5篇通过三个项目实例,综合介绍了如何分析网页、如何搭建分布式爬虫、如何应对常见的反爬虫、如何设计数据模型、如何设计架构模型、如何在实践中综合运用前四篇涉及的技术。
标签
缩略图
书名 Python数据分析与大数据处理从入门到精通
副书名
原作名
作者 朱春旭编
译者
编者 朱春旭
绘者
出版社 北京大学出版社
商品编码(ISBN) 9787301307656
开本 16开
页数 449
版次 1
装订 平装
字数 718000
出版时间 2019-11
首版时间 2019-11-01
印刷时间 2019-11-01
正文语种
读者对象 高职
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 人文社科-社会科学-语言文字
图书小类
重量 806
CIP核字 2019204927
中图分类号 TP311.561
丛书名
印张 29
印次 1
出版地 北京
259
184
22
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号
版权提供者
定价 89.00
印数 4000
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/9 3:44:30