首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 Python机器学习经典实例(影印版)(英文版)
内容
内容推荐
《Python机器学习经典实例(影印版)(英文版)》这本实用指南提供了近200则完整的攻略,可帮助你解决日常工作中可能遇到的机器学习难题。如果你熟悉Python以及包括pandas和scikit—learn在内的库,那么解决一些特定问题将不在话下,比如数据加载、文本处理、数值数据、模型选择、降维以及诸多其他主题。
每则攻略中都包含代码,你可以将其复制并粘贴到实验数据集中,以确保代码的确有效。你可以插入、组合、修改这些代码,从而协助构建你自己的应用程序。攻略中还包括相关的讨论,对解决方案给出了解释并提供有意义的上下文。克里斯·阿尔本著的《Python机器学习经典实例(影印版)(英文版)》在理论和概念之外提供了构造实用机器学习应用所需的具体细节。
作者简介
克里斯·阿尔本是肯尼亚创业公司BRCK的首席数据科学家。他此前创立了AI公司New l(riowledgE以及数据科学播客PartiallyDerivative。Chris在统计学习、人工智能和软件工程方面拥有十年的工作经验。
目录
Preface
1. Vectors, Matrices, and Arrays
1.0 Introduction
1.1 Creating a Vector
1.2 Creating a Matrix
1.3 Creating a Sparse Matrix
1.4 Selecting Elements
1.5 Describing a Matrix
1.6 Applying Operations to Elements
1.7 Finding the Maximum and Minimum Values
1.8 Calculating the Average, Variance, and Standard Deviation
1.9 Reshaping Arrays
1.10 Transposing a Vector or Matrix
1.11 Flattening a Matrix
1.12 Finding the Rank of a Matrix
1.13 Calculating the Determinant
1.14 Getting the Diagonal of a Matrix
1.15 Calculating the Trace of a Matrix
1.16 Finding Eigenvalues and Eigenvectors
1.17 Calculating Dot Products
1.18 Adding and Subtracting Matrices
1.19 Multiplying Matrices
1.20 Inverting a Matrix
1.21 Generating Random Values
2. Loading Data
2.0 Introduction
2.1 Loading a Sample Dataset
2.2 Creating a Simulated Dataset
2.3 Loading a CSV File
2.4 Loading an Excel File
2.5 Loading a ]SON File
2.6 Querying a SQL Database
3. Data Wrangling
3.0 Introduction
3.1 Creating a Data Frame
3.2 Describing the Data
3.3 Navigating DataFrames
3.4 Selecting Rows Based on Conditionals
3.5 Replacing Values
3.6 Renaming Columns
3.7 Finding the Minimum, Maximum, Sum, Average, and Count
3.8 Finding Unique Values
3.9 Handling Missing Values
3.10 Deleting a Column
3.11 Deleting a Row
3.12 Dropping Duplicate Rows
3.13 Grouping Rows by Values
3.14 Grouping Rows by Time
3.15 Looping Over a Column
3.16 Applying a Function Over All Elements in a Column
3.17 Applying a Function to Groups
3.18 Concatenating DataFrames
3.19 Merging DataFrames
4. Handling Numerical Data
4.0 Introduction
4.1 Rescaling a Feature
4.2 Standardizing a Feature
4.3 Normalizing Observations
4.4 Generating Polynomial and Interaction Features
4.5 Transforming Features
4.6 Detecting Outliers
4.7 Handling Outliers
4.8 Discretizating Features
4.9 Grouping Observations Using Clustering
4.10 Deleting Observations with Missing Values
4.11 Imputing Missing Values
……
5. Handling Categorical Data
6. Handling Text
7. Handling Dates and Times
8. Handling Images
9. Dimensionality Reduction Using Feature Extraction
10. Dimensionality Reduction Using Feature Selection
11. Model Evaluation
12. Model Selection
13. Linear Regression
14. Trees and Forests
15. K-Nearest Neighbors
16. Logistic Regression
17. Support Vector Machines
18. Naive Bayes
19. Clustering
20. Neural Networks
21. Saving and Loading Trained Models
Index
标签
缩略图
书名 Python机器学习经典实例(影印版)(英文版)
副书名
原作名
作者 (美)克里斯·阿尔本
译者
编者
绘者
出版社 东南大学出版社
商品编码(ISBN) 9787564179786
开本 16开
页数 349
版次 1
装订 平装
字数 450
出版时间 2018-11-01
首版时间 2018-11-01
印刷时间 2018-11-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 576
CIP核字 2018209208
中图分类号 TP311.561
丛书名
印张 23
印次 1
出版地 江苏
233
178
17
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号 图字10-2018-191号
版权提供者 O’Reilly Media,Inc.
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/16 6:07:19