首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 深入浅出数据科学
内容
内容推荐
数据科学家是目前最热门的职业之一。斯楠·奥兹德米尔著的《深入浅出数据科学》全面介绍了成为合格数据科学家所需的必备知识、技能和工作流程,是一本内容全面的实用性技术图书。
本书分为13章,其中第1~3章介绍数据科学;第4~8章介绍数学知识,包括统计学和概率论;第9章介绍数据可视化;第10~12章介绍机器学习;第13章介绍案例。各个章节内容均由浅入深,同时通过案例和Python代码,使读者掌握实战技能。
本书适合有志于成为数据科学家的师生或业界新手,同时也适合经验丰富的职场老手参考。
目录
第 1章 如何听起来像数据科学家
1.1 什么是数据科学
1.1.1 基本的专业术语
1.1.2 为什么是数据科学
1.1.3 案例:西格玛科技公司
1.2 数据科学韦恩图
1.2.1 数学
1.2.2 计算机编程
1.2.3 为什么是Python
1.2.4 领域知识
1.3 更多的专业术语
1.4 数据科学案例
1.4.1 案例:自动审核政府文件
1.4.2 案例:市场营销费用
1.4.3 案例:数据科学家的岗位描述
1.5 总结
第2章 数据的类型
2.1 数据的“味道”
2.2 为什么要进行区分
2.3 结构化数据和非结构化数据
2.4 定量数据和定性数据
2.4.1 案例:咖啡店数据
2.4.2 案例:世界酒精消费量
2.4.3 更深入的研究
2.5 简单小结
2.6 数据的4个尺度
2.6.1 定类尺度
2.6.2 定序尺度
2.6.3 定距尺度
2.6.4 定比尺度
2.7 数据是旁观者的眼睛
2.8 总结
第3章 数据科学的5个步骤
3.1 数据科学简介
3.2 5个步骤概览
3.2.1 提出有意思的问题
3.2.2 获取数据
3.2.3 探索数据
3.2.4 数据建模
3.2.5 可视化和分享结果
3.3 探索数据
3.3.1 数据探索的基本问题
3.3.2 数据集1:Yelp点评数据
3.3.3 数据集2:泰坦尼克
3.4 总结
第4章 基本的数学知识
4.1 数学学科
4.2 基本的数学符号和术语
4.2.1 向量和矩阵
4.2.2 算术符号
4.2.3 图表
4.2.4 指数/对数
4.2.5 集合论
4.3 线性代数
4.4 总结
第5章 概率论入门:不可能,还是不太可能
5.1 基本的定义
5.2 概率
5.3 贝叶斯VS频率论
5.4 复合事件
5.5 条件概率
5.6 概率定理
5.6.1 加法定理
5.6.2 互斥性
5.6.3 乘法定理
5.6.4 独立性
5.6.5 互补事件
5.7 再进一步
5.8 总结
第6章 高等概率论
6.1 互补事件
6.2 重温贝叶斯思想
6.2.1 贝叶斯定理
6.2.2 贝叶斯定理的更多应用
6.3 随机变量
6.3.1 离散型随机变量
6.3.2 连续型随机变量
6.4 总结
第7章 统计学入门
7.1 什么是统计学
7.2 如何获取数据
7.3 数据抽样
7.3.1 概率抽样
7.3.2 随机抽样
7.3.3 不等概率抽样
7.4 如何描述统计量
7.4.1 测度中心
7.4.2 变异测度
7.4.3 变异系数
7.4.4 相对位置测度
7.5 经验法则
7.6 总结
第8章 高等统计学
8.1 点估计
8.2 抽样分布
8.3 置信区间
8.4 假设检验
8.4.1 实施假设检验
8.4.2 单样本t检验
8.4.3 I型错误和II型错误
8.4.4 分类变量的假设检验
8.5 总结
第9章 交流数据
9.1 为什么交流数据很重要
9.2 识别有效和无效的可视化
9.2.1 散点图
9.2.2 折线图
9.2.3 条形图
9.2.4 直方图
9.2.5 箱形图
9.3 当图表和统计在说谎
9.3.1 相关性VS因果关系
9.3.2 辛普森悖论
9.3.3 如果相关性不等于因果关系,那什么导致了因果关系
9.4 语言交流
9.4.1 关键在于讲故事
9.4.2 正式场合的注意事项
9.5 为什么演示、如何演示和演示策略
9.6 总结
第10章 机器学习精要:你的烤箱在学习吗
10.1 什么是机器学习
10.2 机器学习并不完美
10.3 机器学习如何工作
10.4 机器学习的分类
10.4.1 监督学习
10.4.2 无监督学习
10.4.3 强化学习
10.5 统计模型如何纳入以上分类
10.6 线性回归
10.6.1 增加更多预测因子
10.6.2 回归指标
10.7 Logistic回归
10.8 概率、几率和对数几率
10.9 哑变量
10.10 总结
第11章 树上无预言,真的吗
11.1 朴素贝叶斯分类
11.2 决策树
11.2.1 计算机如何生成回归树
11.2.2 计算机如何拟合分类树
11.3 无监督学习
11.3.1 无监督学习的使用场景
11.3.2 K均值聚类
11.3.3 如何选择最佳的K值,并对簇进行评价
11.4 特征提取和主成分分析
11.5 总结
第12章 超越精要
12.1 偏差-方差权衡
12.1.1 偏差导致的误差
12.1.2 方差导致的误差
12.1.3 两种极端的偏差-方差权衡情况
12.1.4 偏差-方差如何组成误差函数
12.2 K层交叉验证
12.3 网格搜索算法
12.4 集成技术
12.4.1 随机森林
12.4.2 随机森林VS决策树
12.5 神经网络
12.6 总结
第13章 案例
13.1 案例1:基于社交媒体预测股票价格
13.1.1 文本情感分析
13.1.2 探索性数据分析
13.1.3 超越案例
13.2 案例2:为什么有些人会对配偶撒谎
13.3 案例3:初试TensorFlow
13.4 总结
标签
缩略图
书名 深入浅出数据科学
副书名
原作名
作者 (美)斯楠·奥兹德米尔
译者 译者:张星辰
编者
绘者
出版社 人民邮电出版社
商品编码(ISBN) 9787115481269
开本 16开
页数 311
版次 1
装订 平装
字数 332
出版时间 2018-10-01
首版时间 2018-10-01
印刷时间 2018-10-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 550
CIP核字 2018056068
中图分类号 TP274
丛书名
印张 20.75
印次 1
出版地 北京
235
187
16
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号 图字01-2016-8085号
版权提供者 由Packt Publishing公司授权出版
定价
印数 3000
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/9 10:17:30