首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 数论(第1卷影印版)(英文版)
内容
目录
Volume I
Preface
1. Introduction to Diophantine Equations
1.1 Introduction
1.1.1 Examples of Diophantine Problems
1.1.2 Local Methods
1.1.3 Dimensions
1.2 Exercises for Chapter 1
Part I. Tools
2. Abelian Groups, Lattices, and Finite Fields
2.1 Finitely Generated Abelian Groups
2.1.1 Basic Results
2.1.2 Description of Subgroups
2.1.3 Characters of Finite Abelian Groups
2.1.4 The Groups (Z/mZ)*
2.1.5 Dirichlet Characters
2.1.6 Gauss Sums
2.2 The Quadratic Reciprocity Law
2.2.1 The Basic Quadratic Reciprocity Law
2.2.2 Consequences of the Basic Quadratic Reciprocity Law
2.2.3 Gauss's Lemma and Quadratic Reciprocity
2.2.4 Real Primitive Characters
2.2.5 The Sign of the Quadratic Gauss Sum
2.3 Lattices and the Geometry of Numbers
2.3.1 Definitions
2.3.2 Hermite's Inequality
2.3.3 LLL-Reduced Bases
2.3.4 The LLL Algorithms
2.3.5 Approximation of Linear Forms
2.3.6 Minkowski's Convex Body Theorem
2.4 Basic Properties of Finite Fields
2.4.1 General Properties of Finite Fields
2.4.2 Galois Theory of Finite Fields
2.4.3 Polynomials over Finite Fields
2.5 Bounds for the Number of Solutions in Finite Fields
2.5.1 The Chevalley-Warning Theorem
2.5.2 Gauss Sums for Finite Fields
2.5.3 Jacobi Sums for Finite Fields
2.5.4 The Jacobi Sums J(x1,x2)
2.5.5 The Number of Solutions of Diagonal Equations
2.5.6 The Well Bounds
2.5.7 The Weil Conjectures (Deligne's Theorem)
2.6 Exercises for Chapter 2
3. Basic Algebraic Number Theory
3.1 Field-Theoretic Algebraic Number Theory
3.1.1 Galois Theory
3.1.2 Number Fields
3.1.3 Examples
3.1.4 Characteristic Polynomial, Norm, Trace
3.1.5 Noether's Lemma
3.1.6 The Basic Theorem of Kummer Theory
3.1.7 Examples of the Use of Kummer Theory
3.1.8 Artin-Schreier Theory
3.2 The Normal Basis Theorem
3.2.1 Linear Independence and Hilbert's Theorem 90
3.2.2 The Normal Basis Theorem in the Cyclic Case
3.2.3 Additive Polynomials
3.2.4 Algebraic Independence of Homomorphisms
3.2.5 The Normal Basis Theorem
3.3 Ring-Theoretic Algebraic Number Theory
3.3.1 Gauss's Lemma on Polynomials
3.3.2 Algebraic Integers
3.3.3 Ring of Integers and Discriminant
3.3.4 Ideals and Units
3.3.5 Decomposition of Primes and Ramification
3.3.6 Galois Properties of Prime Decomposition
3.4 Quadratic Fields
3.4.1 Field-Theoretic and Basic Ring-Theoretic Properties
3.4.2 Results and Conjectures on Class and Unit Groups
3.5 Cyclotomic Fields
3.5.1 Cyclotomic Polynomials
3.5.2 Field-Theoretic Properties of Q(Sn)
3.5.3 Ring-Theoretic Properties
3.5.4 The Totally Real Subfield of Q(Spk )
……
4. p-adic Fields
5. Quadratic Forms and Local-Global Principles
Part II. Diophantine Equations
6. Some Diophantine Equations
7. Elliptic Curves
8. Diophantine Aspects of Elliptic Curves
Bibliography
Index of Notation
Index of Names
General Index
内容推荐
《数论》分为2卷,是Springer“数学研究生教材”丛书之239和240卷,是一套面向研究生的数论教程,主旨是全面介绍丢番图方程的解,包括多项式方程、有理数和代数数论等,其中特别强调了算术代数几何的现代理论。全书各章共有530例习题,部分习题有提示。
本书是其中的第1卷,由H.科恩著。共分2部分8章,内容包括工具、丢番图方程。
标签
缩略图
书名 数论(第1卷影印版)(英文版)
副书名
原作名
作者 (法)H.科恩
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787519255299
开本 16开
页数 650
版次 1
装订 平装
字数 680
出版时间 2019-03-01
首版时间 2019-03-01
印刷时间 2019-03-01
正文语种
读者对象 本科及以上
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 978
CIP核字 2019003831
中图分类号 O156
丛书名
印张 42.5
印次 1
出版地 广东
241
170
29
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号 01-2018-9179
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/7 20:03:24