首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 卷积神经网络与计算机视觉/智能科学与技术丛书
内容
内容推荐
本书自成一体,如果你既想了解CNN的原理,又想获得将CNN应用于计算机视觉的一手经验,那么本书将非常适合阅读。书中对CNN进行了全面介绍,首先是神经网络的基本概念:训练、正则化和优化。然后讨论了各种各样的损失函数、网络层和流行的CNN架构,回顾了评价CNN的不同技术,并介绍了一些常用的CNN工具和库。此外,本书还分析了CNN在计算机视觉中的应用案例,包括图像分类、对象检测、语义分割、场景理解和图像生成。
目录
译者序
前言
致谢
作者简介
第1章 简介
1.1 什么是计算机视觉
1.1.1 应用案例
1.1.2 图像处理与计算机视觉
1.2 什么是机器学习
1.2.1 为什么需要深度学习
1.3 本书概览
第2章 特征和分类器
2.1 特征和分类器的重要性
2.1.1 特征
2.1.2 分类器
2.2 传统特征描述符
2.2.1 方向梯度直方图
2.2.2 尺度不变特征变换
2.2.3 加速健壮特征
2.2.4 传统的手工工程特征的局限性
2.3 机器学习分类器
2.3.1 支持向量机
2.3.2 随机决策森林
2.4 总结
第3章 神经网络基础
3.1 引言
3.2 多层感知机
3.2.1 基础架构
3.2.2 参数学习
3.3 循环神经网络
3.3.1 基础架构
3.3.2 参数学习
3.4 与生物视觉的关联
3.4.1 生物神经元模型
3.4.2 神经元的计算模型
3.4.3 人工神经元与生物神经元
第4章 卷积神经网络
4.1 引言
4.2 神经网络层
4.2.1 预处理
4.2.2 卷积层
4.2.3 池化层
4.2.4 非线性
4.2.5 全连接层
4.2.6 转置卷积层
4.2.7 感兴趣区域的池化层
4.2.8 空间金字塔池化层
4.2.9 局部特征聚合描述符层
4.2.10 空间变换层
4.3 CNN损失函数
4.3.1 交叉熵损失函数
4.3.2 SVM铰链损失函数
4.3.3 平方铰链损失函数
4.3.4 欧几里得损失函数
4.3.5 1误差
4.3.6 对比损失函数
4.3.7 期望损失函数
4.3.8 结构相似性度量
第5章 CNN学习
5.1 权重初始化
5.1.1 高斯随机初始化
5.1.2 均匀随机初始化
5.1.3 正交随机初始化
5.1.4 无监督的预训练
5.1.5 泽维尔(Xavier)初始化
5.1.6 ReLU敏感的缩放初始化
5.1.7 层序单位方差
5.1.8 有监督的预训练
5.2 CNN的正则化
5.2.1 数据增强
5.2.2 随机失活
5.2.3 随机失连
5.2.4 批量归一化
5.2.5 集成模型平均
5.2.6 e2正则化
5.2.7 e1正则化
5.2.8 弹性网正则化
5.2.9 最大范数约束
5.2.10 早停
5.3 基于梯度的CNN学习
5.3.1 批量梯度下降
5.3.2 随机梯度下降
5.3.3 小批量梯度下降
5.4 神经网络优化器
5.4.1 动量
5.4.2 涅斯捷罗夫动量
5.4.3 自适应梯度
5.4.4 自适应增量
5.4.5 RMSprop
5.4.6 自适应矩估计
5.5 CNN中的梯度计算
5.5.1 分析微分法
5.5.2 数值微分法
5.5.3 符号微分法
5.5.4 自动微分法
5.6 通过可视化理解CNN
5.6.1 可视化学习的权重
5.6.2 可视化激活
5.6.3 基于梯度的可视化
第6章 CNN架构的例子
6.1 LeNet
6.2 AlexNet
6.3 NiN
6.4 VGGnet
6.5 GoogleNet
6.6 ResNet
6.7 ResNeXt
6.8 FractalNet
6.9 DenseNet
第7章 CNN在计算机视觉中的应用
7.1 图像分类
7.1.1 PointNet
7.2 目标检测与定位
7.2.1 基于区域的CNN
7.2.2 快速R-CNN
7.2.3 区域建议网络
7.3 语义分割
7.3.1 全卷积网络
7.3.2 深度反卷积网络
7.3.3 DeepLab
7.4 场景理解
7.4.1 DeepContext
7.4.2 从RGBD图像中学习丰富的特征
7.4.3 用于场景理解的PointNet
7.5 图像生成
7.5.1 生成对抗网络
7.5.2 深度卷积生成对抗网络
7.5.3 超分辨率生成对抗网络
7.6 基于视频的动作识别
7.6.1 静止视频帧的动作识别
7.6.2 双流CNN
7.6.3 长期递归卷积网络
第8章 深度学习工具和库
8.1 Caffe
8.2 TensorFlow
8.3 MatConvNet
8.4 Torch7
8.5 Theano
8.6 Keras
8.7 Lasagne
8.8 Marvin
8.9 Chainer
8.10 PyTorch
第9章 结束语
9.1 本书概要
9.2 未来研究方向
术语表
参考文献
标签
缩略图
书名 卷积神经网络与计算机视觉/智能科学与技术丛书
副书名
原作名
作者 (澳)萨尔曼·汗//侯赛因·拉哈马尼//赛义德·阿法克·阿里·沙//穆罕默德·本纳努恩
译者 译者:黄智濒//戴志涛
编者
绘者
出版社 机械工业出版社
商品编码(ISBN) 9787111622888
开本 16开
页数 184
版次 1
装订 平装
字数
出版时间 2019-04-01
首版时间 2019-04-01
印刷时间 2019-04-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 教育考试-考试-计算机类
图书小类
重量 394
CIP核字 2019051731
中图分类号 TP302.7
丛书名
印张 12.25
印次 1
出版地 北京
259
184
10
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/5 14:37:45