| 图书 | 机器学习(贝叶斯和优化方法英文版原书第2版)(精)/经典原版书库 |
| 内容 | 内容推荐 本书通过讲解监督学习的两大支柱—回归和分类—将机器学习纳入统一视角展开讨论。书中首先讨论基础知识,包括均方、最小二乘和最大似然方法、岭回归、贝叶斯决策理论分类、逻辑回归和决策树。然后介绍新近的技术,包括稀疏建模方法,再生核希尔伯特空间中的学习、支持向量机中的学习、关注EM算法的贝叶斯推理及其近似推理变分版本、蒙特卡罗方法、聚焦于贝叶斯网络的概率图模型、隐马尔科夫模型和粒子滤波。此外,本书还深入讨论了降维和隐藏变量建模。全书以关于神经网络和深度学习架构的扩展章节结束。此外,书中还讨论了统计参数估计、维纳和卡尔曼滤波、凸性和凸优化的基础知识,其中,用一章介绍了随机逼近和梯度下降族的算法,并提出了分布式优化的相关概念、算法和在线学习技术。 |
| 标签 | |
| 缩略图 | ![]() |
| 书名 | 机器学习(贝叶斯和优化方法英文版原书第2版)(精)/经典原版书库 |
| 副书名 | |
| 原作名 | |
| 作者 | (希)西格尔斯·西奥多里蒂斯 |
| 译者 | |
| 编者 | |
| 绘者 | |
| 出版社 | 机械工业出版社 |
| 商品编码(ISBN) | 9787111668374 |
| 开本 | 16开 |
| 页数 | 1130 |
| 版次 | 1 |
| 装订 | 精装 |
| 字数 | |
| 出版时间 | 2021-01-01 |
| 首版时间 | 2021-01-01 |
| 印刷时间 | 2021-01-01 |
| 正文语种 | 英 |
| 读者对象 | |
| 适用范围 | |
| 发行范围 | 公开发行 |
| 发行模式 | 实体书 |
| 首发网站 | |
| 连载网址 | |
| 图书大类 | |
| 图书小类 | |
| 重量 | 1956 |
| CIP核字 | 2020209127 |
| 中图分类号 | TP181 |
| 丛书名 | |
| 印张 | 72 |
| 印次 | 1 |
| 出版地 | 北京 |
| 长 | |
| 宽 | |
| 高 | |
| 整理 | |
| 媒质 | |
| 用纸 | |
| 是否注音 | |
| 影印版本 | |
| 出版商国别 | |
| 是否套装 | |
| 著作权合同登记号 | |
| 版权提供者 | |
| 定价 | |
| 印数 | |
| 出品方 | |
| 作品荣誉 | |
| 主角 | |
| 配角 | |
| 其他角色 | |
| 一句话简介 | |
| 立意 | |
| 作品视角 | |
| 所属系列 | |
| 文章进度 | |
| 内容简介 | |
| 作者简介 | |
| 目录 | |
| 文摘 | |
| 安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
| 随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。