图书 | 机器学习(贝叶斯和优化方法英文版原书第2版)(精)/经典原版书库 |
内容 | 内容推荐 本书通过讲解监督学习的两大支柱—回归和分类—将机器学习纳入统一视角展开讨论。书中首先讨论基础知识,包括均方、最小二乘和最大似然方法、岭回归、贝叶斯决策理论分类、逻辑回归和决策树。然后介绍新近的技术,包括稀疏建模方法,再生核希尔伯特空间中的学习、支持向量机中的学习、关注EM算法的贝叶斯推理及其近似推理变分版本、蒙特卡罗方法、聚焦于贝叶斯网络的概率图模型、隐马尔科夫模型和粒子滤波。此外,本书还深入讨论了降维和隐藏变量建模。全书以关于神经网络和深度学习架构的扩展章节结束。此外,书中还讨论了统计参数估计、维纳和卡尔曼滤波、凸性和凸优化的基础知识,其中,用一章介绍了随机逼近和梯度下降族的算法,并提出了分布式优化的相关概念、算法和在线学习技术。 |
标签 | |
缩略图 | ![]() |
书名 | 机器学习(贝叶斯和优化方法英文版原书第2版)(精)/经典原版书库 |
副书名 | |
原作名 | |
作者 | (希)西格尔斯·西奥多里蒂斯 |
译者 | |
编者 | |
绘者 | |
出版社 | 机械工业出版社 |
商品编码(ISBN) | 9787111668374 |
开本 | 16开 |
页数 | 1130 |
版次 | 1 |
装订 | 精装 |
字数 | |
出版时间 | 2021-01-01 |
首版时间 | 2021-01-01 |
印刷时间 | 2021-01-01 |
正文语种 | 英 |
读者对象 | |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | |
图书小类 | |
重量 | 1956 |
CIP核字 | 2020209127 |
中图分类号 | TP181 |
丛书名 | |
印张 | 72 |
印次 | 1 |
出版地 | 北京 |
长 | |
宽 | |
高 | |
整理 | |
媒质 | |
用纸 | |
是否注音 | |
影印版本 | |
出版商国别 | |
是否套装 | |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。