首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 高等数学竞赛题解析教程
内容
作者简介
陈仲,南京大学数学系教授。曾任全国高等数学研究会常务理事,并参加国家理科“高等数学”试题库建设;曾任江苏省研究生入学考试数学阅卷领导小组副组长、江苏省普通高校高等数学竞赛命题组组长。曾获江苏省一类很好课程奖,两次获江苏省很好教学成果二等奖;曾获南京大学“靠前教师”,连续三年被南京大学学生评为“我很喜爱的老师”,获“浦苑恒星”。著作有《微分方程》《微积分学引论》(上、下册)《硕士生入学考试历年数学试题解析》《大学数学典型题解析》《大学数学教程》(上、下册)《微积分习题与试题解析教程》等。
目录
专题1函数与极限
1.1基本概念与内容提要
1.1.1一元函数基本概念
1.1.2数列的极限
1.1.3函数的极限
1.1.4证明数列或函数极限存在的方法
1.1.5无穷小量
1.1.6无穷大量
1.1.7求数列或函数的极限的方法
1.1.8函数的连续性
1.2竞赛题与精选题解析
1.2.1求函数的表达式(例1.1-1.3)
1.2.2利用极限的性质与四则运算求极限(例1.4-1.13)
1.2.3利用夹逼准则与单调有界准则求极限(例1.14-1.18)
1.2.4利用重要极限与等价无穷小替换求极限(例1.19-1.26)
1.2.5无穷小比较与无穷大比较(例1.27-1.28)
1.2.6连续性与间断点(例1.2-1.31)
1.2.7利用介值定理的证明题(例1.32-1.36)
练习题一
专题2一元函数微分学
2.1基本概念与内容提要
2.1.1导数的定义
2.1.2左、右导数的定义
2.1.3微分概念
2.1.4基本初等函数的导数公式
2.1.5求导法则
2.1.6高阶导数
2.1.7微分中值定理
2.1.8泰勒公式与马克劳林公式
2.1.9洛必达法则
2.1.10  导数在几何上的应用
2.2竞赛题与精选题解析
2.2.1利用导数的定义解题(例2.1-2.6)
2.2.2利用求导法则解题(例2.7-2.9)
2.2.3求高阶导数(例2.10-2.19)
2.2.4与微分中值定理有关的证明题(例2.20-2.41)
2.2.5马克劳林公式与泰勒公式的应用(例2.42-2.60)
2.2.6利用洛必达法则求极限(例2.61-2.69)
2.2.7导数的应用(例2.70-2.83)
2.2.8不等式的证明(例2.84-2.94)
练习题二
专题3一元函数积分学
3.1基本概念与内容提要
3.1.1不定积分基本概念
3.1.2基本积分公式
3.1.3不定积分的计算
3.1.4定积分基本概念
3.1.5定积分中值定理
3.1.6变限的定积分
3.1.7定积分的计算
3.1.8奇偶函数与周期函数定积分的性质
3.1.9定积分在几何与物理上的应用
3.1.10反常积分
3.2竞赛题与精选题解析
3.2.1求不定积分(例3.1-3.16)
3.2.2利用定积分的定义与性质求极限(例3.17-3.23)
3.2.3应用积分中值定理解题(例3.24-3.26)
3.2.4变限的定积分的应用(例3.27-3.36)
3.2.5定积分的计算(例3.37-3.56)
3.2.6定积分在几何与物理上的应用(例3.57-3.67)
3.2.7积分不等式的证明(例3.68-3.90)
3.2.8积分等式的证明(例3.91-3.94)
3.2.9反常积分(例3.95-3.102)
练习题三
专题4多元函数微分学
4.1基本概念与内容提要
4.1.1二元函数的极限与连续性
4.1.2偏导数与全微分
4.1.3多元复合函数与隐函数的偏导数
4.1.4方向导数
4.1.5高阶偏导数
4.1.6二元函数的极值
4.1.7条件极值
4.1.8多元函数的最值
4.2竞赛题与精选题解析
4.2.1求二元函数的极限(例4.1―4.2)
4.2.2二元函数的连续性、可偏导性与可微性(例4.3-4.5)
4.2.3求多元复合函数与隐函数的偏导数(例4.6-4.16)
4.2.4方向导数(例4.17-4.19)
4.2.5求高阶偏导数(例4.20-4.27)
4.2.6求二元函数的极值(例4.28-4.31)
4.2.7求条件极值(例4.32-4.35)
4.2.8求多元函数在空间区域上的最值(例4.36-4.38)
练习题四
专题5多元函数积分学
5.1基本概念与内容提要
5.1.1二重积分基本概念
5.1.2二重积分的计算
5.1.3交换二次积分的次序
5.1.4三重积分基本概念
5.1.5三重积分的计算
5.1.6重积分的应用
5.1.7曲线积分基本概念与计算
5.1.8格林公式
5.1.9曲面积分基本概念与计算
5.1.10斯托克斯公式
5.1.11高斯公式
5.1.12反常重积分
5.1.13梯度、散度与旋度
5.2竞赛题与精选题解析
5.2.1二重积分与二次积分的计算(例5.1-5.14)
5.2.2交换二次积分的次序(例5.15-5.19)
5.2.3三重积分的计算(例5.20-5.25)
5.2.4与重积分有关的不等式的证明(例5.26-5.31)
5.2.5曲线积分的计算(例5.32-5.35)
5.2.6应用格林公式解题(例5.36-5.47)
5.2.7曲面积分的计算(例5.48-5.52)
5.2.8应用斯托克斯公式解题(例5.53-5.55)
5.2.9应用高斯公式解题(例5.56-5.65)
5.2.10反常重积分的计算(例5.66-5.68)
5.2.11多元函数积分学的应用题(例5.69-5.75)
练习题五
专题6空间解析几何
6.1基本概念与内容提要
6.1.1向量的基本概念与向量的运算
6.1.2空间的平面
6.1.3空间的直线
6.1.4空间的曲面
6.1.5.空间的曲线
6.2竞赛题与精选题解析
6.2.1向量的运算(例6.1-6.4)
6.2.2空间平面与直线的方程(例6.5-6.9)
6.2.3空间曲面的方程与空间曲面的切平面(例6.10-6.19)
6.2.4空间曲线的方程与空间曲线的切线(例6.20-6.25)
练习题六
专题7级数
7.1基本概念与内容提要
7.1.1数项级数的主要性质
7.1.2正项级数敛散性判别法
7.1.3任意项级数敛散性判别法
7.1.4幂级数的收敛半径、收敛域与和函数
7.1.5初等函数关于x的幂级数展开式
7.1.6傅氏级数
7.2竞赛题与精选题解析
7.2.1正项级数的敛散性及其应用(例7.1一7.13)
7.2.2任意项级数的敛散性及其应用(例7.14-7.23)
7.2.3求幂级数的收敛域与和函数(例7.24-7.35)
7.2.4求数项级数的和(例7.36-7.42)
7.2.5求初等函数关于x的幂级数展开式(例7.43-7.46)
7.2.6求函数的傅氏级数展开式(例7.47-7.48)
练习题七
专题8微分方程
8.1基本概念与内容提要
8.1.1微分方程的基本概念
8.1.2一阶微分方程
8.1.3二阶微分方程
8.1.4微分方程的应用
8.2竞赛题与精选题解析
8.2.1求解一阶微分方程(例8.1-8.6)
8.2.2求解二阶微分方程(例8.7-8.16)
8.2.3解微分方程的应用题(例8.17-8.23)
练习题八
练习题答案与提示
内容推荐
《高等数学竞赛题解析教程(2020)》根据全国大学生数学竞赛大纲、江苏省普通高等学校非理科专业高等数学竞赛委员会制订的高等数学竞赛大纲和制订的考研数学考试大纲编写而成。本书分极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、空间解析几何、级数、微分方程等八个专题,每个专题又含“基本概念和内容提要”“竞赛题解析”和“练习题”三个部分。本书竞赛题选自全国、江苏省、浙江省、上海市、北京市等省市普通高等学校非理科专业历届高等数学竞赛试题,南京大学等靠前高校历年大学数学竞赛试题,以及莫斯科大学等国外高校大学生数学竞赛试题,本书逐条解析,深入分析,并总结解题方法和技巧。本书可供各类高等学校的大学生作为学习高等数学的参考书,特别有益于成绩很好的大学生提高高等数学水平。
标签
缩略图
书名 高等数学竞赛题解析教程
副书名
原作名
作者 主编陈仲
译者
编者 陈仲
绘者
出版社 东南大学出版社
商品编码(ISBN) 9787564186210
开本 16开
页数 345
版次 1
装订 平装
字数 436000
出版时间 2019-12
首版时间 2019-12-01
印刷时间 2019-12-01
正文语种
读者对象 本科及以上
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 452
CIP核字 2019256754
中图分类号 O13-44
丛书名
印张 22.25
印次 1
出版地 江苏
238
168
24cm
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号
版权提供者
定价 46.80
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/7 5:57:11