首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 随机过程基础
内容
目录
Preface
Chapter 1 Basis of probability
1.1 Random ovcnts
1.1.1 Random experiments
1.1.3 Calculation among random evcnts
1.1.4 u-algebras
1.2 Probability
1.2.1 What is probability
1.2.2 Properties of probability
1.2.3 Two fundamental probability models
1.2.4 Conditional probability and three important formulas
1.2.5 Independence of events
1.3 Random variables
1.3.1 Definition
1.3.2 Cumulative distribution functions
1.3.4 Multiple-dimensional random variablcs
1.3.5 Distributions of functions of random variables
1.3.6 Conditional distributions and indepenclences
1.3.7 Order statistics
1.4 Numerical characteristics
1.4.1 Definition of mathematical expectations
1.4.2 Properties
1.4.3 0ther numerical characteristics of random variables
1.4.4 Conditional mathematical expectations
1.5 Limiting thcoroms
1.5.1 Convcrgencc of random variablcs
1.5.2 Law of large numbers
1.5.3 Central limit thcorcms
Exercise 1
Answers or tips for Exercise 1
Chapter 2 Stochastic processes
2.1 Definition and classification
2.1.1 Definition
2.1.3 Examples
2.2 Statistical laws of stochastic processes
2.2.1 Finite dimensional distribution functions
2.2.2 Kolmogorov's theorem
2.3 Mcasurcmcnts of stochastic proccsscs
2.3.1 Measurements for one stochastic process
2.3.2 Measurements for two stochastic processes
2.4 Further comments
Exercise 2
Answers or tips for Exercise 2
Chapter 3 Poisson processes
3.1 Definition and measurements
3.1.1 Definition
3.1.2 Measurements
3.2 Waiting timcs and intcrarrival times
3.2.1 Waiting times
3.2.2 Interarrival times
3.3 Conditional distributions
3.4 Extcnsions of Poisson procosscs
3.4.1 Non-homogencous Poisson proccsscs
3.4.2 Compound Poisson processes
3.4.3 Conditional Poisson processes
3.4.4 Renewal processes
Exercise 3
Answers or tips for Exercise 3
Chapter 4 Discrete-time Markov chains
4.1 Definition of discrete-time Markov chains
4.1.1 Definition
4.1.2 Chapman-Kolmogorov equations
4.2 Finite-dhnensional distributions
4.3 Propcrtios of a singlo statc
4.3.2 Transience and recurrence
4.4 Decomposition of state space
4.4.1 Equivalencc rclation
4.4.2 Decomposition of statc space
4.5 Asymptotic behaviors of transition probabilities pij(n)
4.5.1 Case one: state j is transient or null-recurrent
4.5.2 Case two: state j is positive-recurrent
4.6 Stationary distributions
4.6.1 Definition of stationary distributions
4.6.2 How many stationary distributions a Markov chain may have?
4.6.3 Rates of convergence to stationary distributions
4.6.4 Stationary distributions of a ccnsored Markov chain
4.6.5 Quasi-stationary distributions
4.7 Rovcrsiblc Markov chains
Exercise 4
Answers or tips for Exercise 4
Chapter 5 Continuous-time Markov chains
5.1 Dofinitionof continuous-timc Markov chains
5.1.1 Definition
5.1.2 Chapman-Kolmogorov equations
5.2 Finite-dhnensional distributions
5.3 Q-matriccs
5.4 Kolmogorov difforcntial cquations
5.5 Asymptotic behaviors
5.5.1 Transience and recurrence
5.5.2 Limiting results
5.5.3 Stationary distributions
5.6 Birth and death processes
Exercise 5
Answers or tips for Exercise 5
Chapter 6 Simple Markovian queueing models
6.1 Torminology and notation
6.2 Little's law and PASTA property
6.2.1 Little's law
6.2.2 PASTA property
6.3 M/M/l queueing model
6.3.1 Stationary distribution of queue length
6.3.2 Distributions of sojourn times and waiting times
6.3.3 Busy period distribution
6.3.4 Departure process
6.4 M/M
, and state dependent M/M/l queueing model
6.4.1 M/M
, queucing modcl
6.4.2 State dcpendentM/M/lqueucing modcl
6.5 Mx/M/l queueing model
6.6 M/G/l queueing model
6.6.1 Embedded Markov chain
6.6.2 M/Er/1 qucueing model
Exercise 6
Answers or tips for Exercise 6
Chapter 7 Stationary processes
7.1.1 Strict-sense stationary processes
7.1.2 Wide-sense stationary processes
7.2 Analytic propcrties of wide-sonso stationary proccsscs
7.3 Corrclation functions and their spectra
7.3.1 Properties of correlation functions
7.3.2 Spectral density functions
7.3.3 Properties of spectral density functions
7.3.4 Continuous-time whitc noisc processes
7.5 Passing through a linear time-invariant system
Exercise 7
Answers or tips for Exercise 7
References
Indes
内容推荐
本教材试图从工科的角度介绍随机过程的基本概念和方法内容,特点是阅读的起点相对较低,使读者能够在较短的时间内了解随机过程的基础知识和主要内容,首先对于随机过程的基本思想进行详细的介绍,随后选择几种重要的随机过程进行重点介绍,而对于涉及较深数学知识的内容列出
标签
缩略图
书名 随机过程基础
副书名
原作名
作者 唐加山编
译者
编者 编者:唐加山
绘者
出版社 科学出版社
商品编码(ISBN) 9787030596208
开本 24cm
页数 372
版次 1
装订 平装
字数 467000
出版时间 2019-04-01
首版时间 2019-04-01
印刷时间 2018-01-01
正文语种 CHI
读者对象 高校相关专业师生
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 542
CIP核字
中图分类号 O211.6
丛书名
印张 22.5
印次 1
出版地 北京
239
169
24cm
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号
版权提供者
定价 79.00
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/10 3:37:02