首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 数据预处理从入门到实战 基于SQL、R、Python
内容
内容推荐
在大数据、人工智能时代,数据分析必不可少。本书以数据分析中至关重要的数据预处理为主题,通过54道例题具体介绍了基于SQL、R、Python的处理方法和相关技巧。全书共4个部分:第1部分介绍预处理的基础知识;第2部分介绍以数据结构为对象的预处理,包括数据提取、数据聚合、数据连接、数据拆分、数据生成和数据扩展;第3部分介绍以数据内容为对象的预处理,涉及数值型、分类型、日期时间型、字符型和位置信息型;第4部分为预处理实战,介绍与实际业务相同的预处理流程。
本书适合新手数据科学家、系统工程师、具备编程及数理基础的技术人才,以及对数据挖掘和数据分析等感兴趣的人阅读。
作者简介
本桥智光(作者)
先后在系统开发公司担任研究员,在互联网企业担任数据科学家,目前在数字医疗初创公司SUSMED株式会社担任CTO,同时就职于HOXO-M株式会社,并以自由职业者的身份从事量子退火计算机的验证工作,拥有制造业、零售业、金融业、运输业、休闲业和互联网等多个行业的数据分析经验。曾在KDD CUP 2015中赢得亚军。爱好是开发马里奥AI。
Twitter:@tomomoto_LV3
陈涛(译者)
运筹学硕士毕业,主要从事数据库、数据分析工作,对机器学习、深度学习领域相关的理论和技术较为熟悉。因兴趣自学日语,一直致力于追求兴趣和工作的完美结合。
邮箱:victory123_456@163.com
目录
第 1部分 预处理入门 1
第 1章 什么是预处理 2
1-1 数据 2
记录数据 2
数据类型 3
1-2 预处理的作用 3
机器学习 4
无监督学习和有监督学习 4
用于数据分析的3种预处理 5
1-3 预处理的流程 6
对数据结构的预处理 7
对数据内容的预处理 7
预处理的步骤 7
1-4 3种编程语言 9
正确使用编程语言 9
1-5 包和库 10
用于数据分析的包和库 10
1-6 数据集 11
酒店预订记录 12
工厂产品记录 13
月度指标记录 14
文本数据集 14
1-7 读取数据 14
第 2部分 对数据结构的预处理 19
第 2章 数据提取 20
2-1 提取指定的列 20
Q 提取列 21
2-2 按指定条件提取 26
Q 按条件提取数据行 28
Q 间接利用索引提取数据行 33
2-3 不基于数据值的采样 35
Q 随机采样 35
2-4 基于聚合ID的采样 38
Q 按ID采样 39
第3章 数据聚合 43
3-1 计算数据条数和类型数 43
Q 计数和唯一值计数 44
3-2 计算合计值 48
Q 合计值 48
3-3 计算最值、代表值 50
Q 代表值 51
3-4 计算离散程度 54
Q 方差和标准差 54
3-5 计算众数 57
Q 众数 58
3-6 排序 61
排序函数 61
Q 为时序数据添加编号 62
Q 排序 66
第4章 数据连接 69
4-1 主表的连接 69
Q 主表的连接 70
4-2 切换按条件连接的表 77
Q 切换按条件连接的主表 77
4-3 连接历史数据 84
Q 获取往前数第n条记录的数据 85
Q 前n条记录的合计值 88
Q 前n条记录的平均值 92
Q 过去n天的合计值 95
4-4 交叉连接 99
Q 交叉连接处理 99
第5章 数据拆分 105
5-1 记录数据中模型验证数据的拆分 105
Q 交叉验证 107
5-2 时序数据中模型验证数据的拆分 111
Q 准备时序数据中的训练数据和验证数据 113
第6章 数据生成 117
6-1 通过欠采样调整不平衡数据 118
6-2 通过过采样调整不平衡数据 119
Q 过采样 120
第7章 数据扩展 124
7-1 转换为横向显示 124
Q 转换为横向显示 125
7-2 转换为稀疏矩阵 128
Q 稀疏矩阵 128
第3部分 对数据内容的预处理 131
第8章 数值型 132
8-1 转换为数值型 132
Q 各种数据类型的转换 132
8-2 通过对数化实现非线性变换 135
Q 对数化 137
8-3 通过分类化实现非线性变换 139
Q 数值型的分类化 140
8-4 归一化 142
Q 归一化 143
8-5 删除异常值 146
Q 根据标准差删除异常值 146
8-6 用主成分分析实现降维 148
Q 用主成分分析实现降维 149
8-7 数值填充 152
Q 删除缺失记录 153
Q 用常数填充 155
Q 均值填充 157
Q 用PMM实现多重插补 160
第9章 分类型 164
9-1 转换为分类型 164
Q 分类型的转换 165
9-2 哑变量化 168
Q 哑变量化 169
9-3 分类值的聚合 171
Q 分类值的聚合 172
9-4 分类值的组合 175
Q 分类值的组合 175
9-5 分类型的数值化 177
Q 分类型的数值化 178
9-6 分类型的填充 181
Q 用KNN填充 182
第 10章 日期时间型 185
10-1 转换为日期时间型、日期型 185
Q 日期时间型、日期型的转换 185
10-2 转换为年、月、日、时、分、秒、星期 189
Q 获取各日期时间元素 190
10-3 转换为日期时间差 194
Q 计算日期时间差 195
10-4 日期时间型的增减 200
Q 日期时间的增减处理 200
10-5 转换为季节 203
Q 转换为季节 204
10-6 转换为时间段 208
10-7 转换为工作日、休息日 209
Q 添加休息日标志 209
第 11章 字符型 212
11-1 通过形态分析进行分解 213
Q 提取名词和动词 213
11-2 转换为单词的集合数据 215
Q 创建词袋 216
11-3 用TF-IDF调整单词权重 220
Q 创建使用TF-IDF的词袋 221
第 12章 位置信息型 224
12-1 从日本坐标系到世界坐标系的转换以及从度、分、秒到度的转换 224
Q 从日本坐标系转换为世界坐标系 224
12-2 两点间距离、方向的计算 228
Q 计算距离 228
第4部分 预处理实战 233
第 13章 实战练习 234
13-1 聚合分析的预处理 234
Q 聚合分析的准备工作 234
13-2 用于推荐的预处理 238
Q 生成推荐矩阵 238
13-3 预测建模的预处理 243
Q 用于预测建模的预处理 243
结语 254
参考文献 255
导语
一本书掌握大数据、人工智能时代需要的数据预处理技术
·KDD CUP 2015亚军得主多行业实战经验总结;
·54道例题,涵盖常见数据预处理技术;
·3个实战案例,快速提升应用能力;
·3种语言实现对比,代码优化关键点一目了然;
·配套数据+源码可下载;
·SQL的版本为Redshift,Pyhton的版本为3.6,R的版本的3.4;
·双色印刷。
数据提取/数据聚合/数据连接/数据拆分/数据生成/数据扩展
数值型/分类型/日期时间型/字符型/位置信息型
1.习题式结构,带着问题思考、学习,效果更好
本书采用问题驱动式,先抛出常见预处理任务,引导读者思考如何实现。像这样带着问题学习,可以大大提高学习效果,让理解更深入。
2.对比3种不同语言的实现,把握每种语言的特长
用SQL、R、Python对比解决相同的案例问题,可以让读者了解各语言在处理各种预处理问题时有哪些优缺点,从而根据情况选择合适的语言,提升预处理效率。
3.同时给出一般代码与理想代码,优化处理的关键一目了然
对于每道例题,都同时给出一般代码与理想代码,读者不仅可以边阅读边思考如何修改一般代码,还可以通过与理想代码的对比明白如何优化代码。
主题词
数据分析//数据科学//大数据//人工智能//SQL//R//Python
标签
缩略图
书名 数据预处理从入门到实战 基于SQL、R、Python
副书名
原作名
作者 [日]本桥智光
译者 陈涛
编者
绘者
出版社 人民邮电出版社
商品编码(ISBN) 9787115552327
开本 16开
页数 253
版次 01
装订 平装
字数 421千字
出版时间 2021-02
首版时间 2021-02
印刷时间
正文语种 中文版
读者对象
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 计算机-更多
图书小类
重量
CIP核字
中图分类号 TP312
丛书名
印张 17.000
印次 01
出版地 北京市
整理
媒质
用纸
是否注音
影印版本
出版商国别 中国
是否套装
著作权合同登记号
版权提供者
定价
印数 2650
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/6/19 4:45:50