首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 计算机视觉
内容
目录
章 绪论
本章思维导图
1.1 计算机视觉简史
1.2 2012年——计算机视觉发展的新起点
1.3 计算机视觉应用
1.4 GPU与并行技术——深度学习和计算机视觉发展的加速器
1.5 基于卷积神经网络的计算机视觉应用
1.6 全书章节简介
本章思考题
本章参考文献

第2章 图像的表示
本章思维导图
2.1 色彩学基础
2.1.1 三基色原理
2.1.2 彩色模型
2.1.3 小结
2.2 图像的数字化
2.2.1 采样
2.2.2 量化
2.2.3 图像的性质
2.2.4 像素间的关系
2.2.5 对比度
2.2.6 敏锐度
2.2.7 图像中的噪声
2.2.8 小结
2.3 图像预处理
2.3.1 灰度化
2.3.2 几何变换
2.3.3 图像增强
2.3.4 小结
2.4 本章总结
本章思考题
本章参考文献

第3章 特征提取
本章思维导图
3.1 局部特征点检测概述
3.2 角点检测
3.2.1 角点介绍
3.2.2 Harris角点
3.2.3 Fast角点
*3.2.4 FAST-ER角点检测子
3.2.5 小结
3.3 斑点检测
3.3.1 斑点介绍
3.3.2 LOG斑点检测
*3.3.3 DOG斑点检测
*3.3.4 DOH斑点检测
3.3.5 SIFT斑点检测
3.3.6 SURF斑点检测
3.3.7 小结
3.4 特征描述子
3.4.1 特征描述子介绍
3.4.2 BRIEF描述子
3.4.3 ORB特征提取算法
3.4.4 BRISK特征提取算法
3.4.5 FREAK特征提取算法
3.4.6 小结
3.5 边缘检测
3.5.1 边缘介绍
3.5.2 边缘检测介绍
3.5.3 边缘检测的基本方法
3.5.4 边缘检测算子的概念
3.5.5 常见的边缘检测算子
3.5.6 梯度算子介绍
3.5.7 梯度的衡量方法
3.5.8 如何用梯度算子实现边缘检测
3.5.9 小结
3.6 一阶微分边缘算子
3.6.1 一阶微分边缘算子的基本思想
3.6.2 Roberts算子
3.6.3 Prewitt算子
3.6.4 Sobel算子
3.6.5 Kirsch算子
3.6.6 小结
3.7 二阶微分边缘算子
3.7.1 二阶微分边缘算子的基本思想
3.7.2 Laplace算子
3.7.3 LOG算子
3.7.4 Canny算子
3.7.5 小结
3.8 基于窗口模板的检测方法
3.8.1 SUSAN检测方法介绍
3.8.2 小结
3.9 新兴的边缘检测算法
3.9.1 小波分析
3.9.2 模糊算法
3.9.3 人工神经网络
3.9.4 小结
3.1 0 本章总结
本章思考题
本章参考文献

第4章 神经网络
本章思维导图
4.1 感知器
4.1.1 基本概念
4.1.2 激活函数
4.2 神经网络基础
4.3 前向传播与反向传播算法
4.3.1 前向传播算法
4.3.2 反向传播算法原理
4.3.3 反向传播计算过程推导
4.4 卷积神经网络概述
4.5 卷积神经网络结构
4.6 卷积神经网络的组成
4.6.1 局部感知
4.6.2 空间排列
4.6.3 参数共享
4.6.4 卷积
4.6.5 池化层
4.6.6 全连接层
4.6.7 卷积神经网络架构
4.7 卷积神经网络的应用
4.8 循环神经网络概述
4.9 循环神经网络与语言模型
4.1 0 循环神经网络结构
4.1 1 循环神经网络的扩展与改进
4.1 1.1 Simple-RNN
4.1 1.2 双向循环神经网络
4.1 1.3 深度循环神经网络
4.1 1.4 长短期记忆网络与门控循环单元网络
4.1 2 本章总结
本章思考题
本章参考文献

第5章 物体分类与识别
本章思维导图
5.1 从AlexNet到GoogLeNet
5.1.1 AlexNet
5.1.2 VGGNet
5.1.3 GoogLeNet
5.1.4 小结
5.2 深度残差网络ResNet
5.2.1 平原网络的深度限制
5.2.2 ResNet的提出
5.2.3 残差学习突破深度限制
5.2.4 小结
5.3 迁移学习图像分类
5.3.1 迁移学习简介
5.3.2 迁移学习图像分类策略
5.3.3 小结
5.4 本章总结
本章思考题
本章参考文献

第6章 目标检测与语义分割
本章思维导图
6.1 从RCNN到Faster R-CNN
6.1.1 R-CNN网络结构
6.1.2 交并比
6.1.3 边框回归算法
6.1.4 非极大值抑制
6.1.5 SPP-Net网络结构
6.1.6 Fast R-CNN网络结构
6.1.7 Faster R-CNN网络结构
6.1.8 小结
6.2 端到端方法:YOLO、SSD
6.2.1 One Stage和TWO Stage方法比较
6.2.2 YOLO网络结构
6.2.3 SSD网络结构
6.2.4 小结
6.3 从FCN到Mask R-CNN
6.3.1 FCN网络结构
6.3.2 DeepLab网络结构
6.3.3 Mask R-CNN网络结构
6.3.4 小结
6.4 本章总结
本章思考题
本章参考文献

第7章 图片描述与关系识别
本章思维导图
7.1 单词、句子在深度学习模型中的表示
7.1.1 One-Hot表示
7.1.2 词嵌入表示
7.1.3 小结
7.2 Encoder-Decoder模型
7.2.1 Encoder-Decoder基本结构
7.2.2 Attention机制
7.2.3 小结
7.3 基于Encoder-Decoder的图片描述与关系识别模型
7.3.1 NIC网络模型
7.3.2 基于Attention的图片描述
7.3.3 小结
7.4 本章总结
本章思考题
本章参考文献

第8章 生成对抗网络
本章思维导图
8.1 GANs模型介绍
8.1.1 生成模型与判别模型
8.1.2 对抗网络思想
8.1.3 详细实现过程
8.1.4 小结
8.2 GANs的简单理论介绍
8.2.1 GANs的理论灵感
8.2.2 GANs的理论证明
8.2.3 小结
8.3 GANs的应用
8.3.1 文本转图像——CGAN
8.3.2 照片风格转化——CycleGAN
8.3.3 局部变脸术——StarGAN
8.3.4 定制图片生成——InfoGAN
8.3.5 小结
8.4 本章总结
本章思考题
本章参考文献
内容推荐
本书主要探讨当前计算机视觉方面的前沿问题,特别关注于深度学习在计算机视觉领域的应用。本书首先介绍了计算机视觉的基本概念和人工设计的计算机视觉算法。本书接着对深度学习在计算机视觉领域的应用展开讨论。本书首先介绍了神经网络,特别是卷积神经网络的基础知识和发展
标签
缩略图
书名 计算机视觉
副书名
原作名
作者 双锴编
译者
编者 双锴
绘者
出版社 北京邮电大学出版社
商品编码(ISBN) 9787563559466
开本 26cm
页数 192
版次 1
装订 平装
字数 283000
出版时间 2019-12-01
首版时间 2020-01-01
印刷时间 2020-01-01
正文语种 CHI
读者对象 本书可以作为高年级本科生和研究生相关课程的教材,也可供相关领域的工程技术人员参阅
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 296
CIP核字 2019280389
中图分类号 TP302.7
丛书名
印张 11.5
印次 1
出版地 北京
260
186
26cm
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号
版权提供者
定价 39.00
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/5 14:31:35