这本《伽罗瓦上同调》由(法)塞尔著,本书是一部译自法语的讲述伽罗瓦上同调的经典专著。经过30年的读者检验,好评不断,故此再次引进出版,将经典再现。书中增加了R.Steinberg的一份很成熟的论文,一些新的资料和扩展的参考文献。这些都使得这本书的内容更加充实。读者对象:数学专业的研究生和科研人员。
图书 | 伽罗瓦上同调 |
内容 | 编辑推荐 这本《伽罗瓦上同调》由(法)塞尔著,本书是一部译自法语的讲述伽罗瓦上同调的经典专著。经过30年的读者检验,好评不断,故此再次引进出版,将经典再现。书中增加了R.Steinberg的一份很成熟的论文,一些新的资料和扩展的参考文献。这些都使得这本书的内容更加充实。读者对象:数学专业的研究生和科研人员。 目录 Foreword Chapter I. Cohomology of proflnite groups 1. Proflnite groups 1.1 Definition 1.2 Subgroups 1.3 Indices 1.4 Pro-p-groups and Sylow p-subgroups 1.5 Pro-p-groups 2. Cohomology 2.1 Discrete G-modules 2.2 Cochains, cocycles, cohomology 2.3 Low dimensions 2.4 Functoriality 2.5 Induced modules 2.6 Complements 3. Cohomological dimension 3.1 p-cohomological dimension 3.2 Strict cohomological dimension 3.3 Cohomological dimension of subgroups and extensions 3.4 Characterization of the profinite groups G such that cdp(G) < 1 3.5 Dualizing modules 4. Cohomology of pro-p-groups 4.1 Simple modules 4.2 Interpretation of H1: generators 4.3 Interpretation of H2: relations 4.4 A theorem of Shafarevich 4.5 Poincare groups 5. Nonabelian cohomology 5.1 Definition of H~ and of H1 5.2 Principal homogeneous spaces over A - a new definition of H1(G,A) 5.3 Twisting 5.4 The cohomology exact sequence associated to a subgroup 5.5 Cohomology exact sequence associated to a normal subgroup 5.6 The case of an abelian normal subgroup 5.7 The case of a central subgroup 5.8 Complements 5.9 A property of groups with cohomological dimension _< 1 Bibliographic remarks for Chapter I Appendix 1. J. Tate - Some duality theorems Appendix 2. The Golod-Shafarevich inequality 1. The statement 2. Proof Chapter II. Gaiois cohomology, the commutative case 1. Generalities 1.1 Galois cohomology 1.2 First examples 2. Criteria for cohomological dimension 2.1 An auxiliary result 2.2 Case when p is equal to the characteristic 2.3 Case when p differs from the characteristic 3. Fields of dimension _<1 3.1 Definition 3.2 Relation with the property (C1) 3.3 Examples of fields of dimension _< 1 4. Transition theorems 4.1 Algebraic extensions 4.2 Transcendental extensions 4.3 Local fields 4.4 Cohomological dimension of the Galois group of an algebraic number field 4.5 Property (Cr) 5. p-adic fields 5.1 Summary of known results 5.2 Cohomology of finite Gk-modulea 5.3 First applications 5.4 The Euler-Poincare characteristic (elementary case) 5.5 Unramified cohomology 5.6 The Galois group of the maximal p-extension of k 5.7 Euler-Poincar6 characteristics 5.8 Groups of multiplicative type 6. Algebraic number fields 6.1 Finite modules - definition of the groups Pt(k, A) 6.2 The finiteness theorem 6.3 Statements of the theorems of Poitou and ~te Bibliographic remarks for Chapter II Appendix. Gaiols cohomology of purely transcendental extensions 1. An exact sequence 2. The local case 3. Algebraic curves and function fields in one variable 4. The case K = k(T) 5. Notation 6. Killing by base change 7. Manin conditions, weak approximation and Schinzel's hypothesis 8. Sieve bounds Chapter III. Nonabelian Galols cohomology 1. Forms 1.1 Tensors 1.2 Examples 1.3 Varieties, algebraic groups, etc 1.4 Example: the k-forms of the group SLn 2. Fields of dimension _< 1 2.1 Linear groups: summary of known results 2.2 Vanishing of H1 for connected linear groups 2.3 Steinberg's theorem 2.4 Rational points on homogeneous spaces 3. Fields of dimension _< 2 3.1 Conjecture II 3.2 Examples 4. Finiteness theorems 4.1 Condition (F) 4.2 Fields of type (F) 4.3 Finiteness of the cohomology of linear groups 4.4 Finiteness of orbits 4.5 The case k = R 4.6 Algebraic number fields (Borel's theorem) 4.? A counter-example to the "Hasse principle" Bibliographic remarks for Chapter III Appendix 1. Regular elements of semisimple groups (by R. Steinberg) 1. Introduction and statement of results 2. Some recollections 3. Some characterizations of regular elements 4. The existence of regular unipotent elements 5. Irregular elements 6. Class functions and the variety of regular classes 7. Structure of N 8. Proof of 1.4 and 1.5 9. Rationality of N 10. Some cohomological applications 11. Added in proof Appendix 2. Complements on Galois cohomology 1. Notation 2. The orthogonal case 3. Applications and examples 4. Injectivity problems 5. The trace form 6. Bayer-Lenstra theory: self-dual normal bases 7. Negligible cohomology classes Bibliography Index |
标签 | |
缩略图 | ![]() |
书名 | 伽罗瓦上同调 |
副书名 | |
原作名 | |
作者 | (法)塞尔 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787510070273 |
开本 | 24开 |
页数 | 210 |
版次 | 1 |
装订 | 平装 |
字数 | |
出版时间 | 2014-03-01 |
首版时间 | 2014-03-01 |
印刷时间 | 2014-03-01 |
正文语种 | 英 |
读者对象 | 研究人员,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.274 |
CIP核字 | 2013249313 |
中图分类号 | O189.22 |
丛书名 | |
印张 | 10 |
印次 | 1 |
出版地 | 北京 |
长 | 224 |
宽 | 148 |
高 | 9 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | 图字01-2013-5939 |
版权提供者 | Springer Science & Business Media |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。