首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 策略前展策略迭代与分布式强化学习(国际知名大学原版教材)(英文版)/信息技术学科与电气工程学科系列
内容
内容推荐
本书主要内容:第1章为动态规划原理;第2章为策略前展与策略改进;第3章为专用策略前展算法;第4章为值和策略的学习;第5章为无限时间分布式和多智能体算法。
横空出世的围棋软件AlphaZero算法对本书有很大影响。本书内容同样基于策略迭代、值网络和策略网络的神经网络近似表示、并行与分布式计算和前瞻最小化约简技术的核心框架构建,并对算法的适用范围做了拓展。本书的特色在于给出了分布式计算和多智能体系统框架下的强化学习策略改进计算的效率提升技术,建立了一步策略改进策略前展方法同控制系统中广泛使用的模型预测控制(MPC)设计方法之间的联系,并描述了策略前展方法在复杂离散和组合优化问题方面的应用。
通过阅读本书,读者可以了解强化学习中的策略迭代,特别是策略前展方法在分布式和多智能体框架下的最新进展和应用。本书可用作人工智能或系统与控制科学等相关专业的高年级本科生或研究生的教材,也适合开展相关研究工作的专业技术人员作为参考书。
目录
1 Exact and Approximate Dynamic Programming Principles
1.1 AlphaZero, Off-Line Training, and On-Line Play
1.2 Deterministic Dynamic Programming
1.2.1 Finite Horizon Problem Formulation
1.2.2 The Dynamic Programming Algorithm
1.2.3 Approximation in Value Space
1.3 Stochastic Dynamic Programming
1.3.1 Finite Horizon Problems
1.3.2 Approximation in Value Space for Stochastic DP
1.3.3 Infinite Horizon Problems-An Overview
1.3.4 Infinite Horizon-Approximation in Value Space
1.3.5 Infinite Horizon-Policy Iteration, Rollout, andNewton's Method
1.4 Examples, Variations, and Simplifications
1.4.1 A Few Words About Modeling
1.4.2 Problems with a Termination State
1.4.3 State Augmentation, Time Delays, Forecasts, and Uncontrollable State Components
1.4.4 Partial State Information and Belief States
1.4.5 Multiagent Problems and Multiagent Rollout
1.4.6 Problems with Unknown Parameters-AdaptiveControl
1.4.7 Adaptive Control by Rollout and On-LineReplanning
1.5 Reinforcement Learning and Optimal Control-SomeTerminology
1.6 Notes and Sources
2 General Principles of Approximation in Value Space
2.1 Approximation in Value and Policy Space
2.1.1 Approximation in Value Space-One-Step and Multistep Lookahead
2.1.2 Approximation in Policy Space
2.1.3 Combined Approximation in Value and Policy Space
2.2 Approaches for Value Space Approximation
2.2.1 Off-Line and On-Line Implementations
2.2.2 Model-Based and Model-Free Implementations
2.2.3 Methods for Cost-to-Go Approximation
2.2.4 Methods for Expediting the Lookahead Minimization
2.3 Deterministic Rollout and the Policy Improvement Principle
2.3.1 On-Line Rollout for Deterministic Discrete Optimization
2.3.2 Using Multiple Base Heuristics-Parallel Rollout
2.3.3 The Simplified Rollout Algorithm
2.3.4 The Fortified Rollout Algorithm
2.3.5 Rollout with Multistep Lookahead
2.3.6 Rollout with an Expert
2.3.7 Rollout with Small Stage Costs and Long Horizon-Continuous-Time Rollout
2.4 Stochastic Rollout and Monte Carlo Tree Search
2.4.1 Simulation-Based Implementation of the Rollout Algorithm
2.4.2 Monte Carlo Tree Search
2.4.3 Randomized Policy Improvement by Monte Carlo Tree Search
2.4.4 The Effect of Errors in Rollout-Variance Reduction
2.4.5 Rollout Parallelization
2.5 Rollout for Infinite-Spaces Problems-Optimization Heuristics
2.5.1 Rollout for Infinite-Spaces Deterministic Problems
2.5.2 Rollout Based on Stochastic Programming
2.6 Notes and Sources
3 Specialized Rollout Algorithms
3.1 Model Predictive Control
3.1.1 Target Tubes and Constrained Controllability
3.1.2 Model Predictive Control with Terminal Cost
3.1.3 Variants of Model Predictive Control
3.1.4 Target Tubes and State-Constrained Rollout
3.2 Multiagent Rollout
3.2.1 Asynchronous and Autonomous Multiagent Rollout
3.2.2 Multiagent Coupling Through Constraints
3.2.3 Multiagent Model Predictive Control
3.2.4 Separable and Multiarmed Bandit Problems
3.3 Constrained Rollout-Deterministic Optimal Control
3.3.1 Sequential Consistency, Sequential Improvement, and the Cost Improvement Property
3.3.2 The Fortified Rollout Algorithm and Other Variations
3.4 Constrained Rollout-Discrete Optimization
3.4.1 General Discrete Optimization Problems
3.4.2 Multidimensional Assignment
3.5 Rollout for Surrogate Dynamic Programming and Bayesian Optimization
3.6 Rollout for Minimax Control
3.7 Notes and Sources
4 Learning Values and Policies
4.1 Parametric Approximation Architectures
4.1.1 Cost Function Approximation
4.1.2 Feature-Based Architectures
4.1.3 Training of Linear and Nonlinear Architectures
4.2 Neural Networks
4.2.1 Training of Neural Networks
4.2
标签
缩略图
书名 策略前展策略迭代与分布式强化学习(国际知名大学原版教材)(英文版)/信息技术学科与电气工程学科系列
副书名
原作名
作者 (美)德梅萃·P.博赛卡斯
译者
编者
绘者
出版社 清华大学出版社
商品编码(ISBN) 9787302599388
开本 16开
页数 483
版次 1
装订 平装
字数 698
出版时间 2022-04-01
首版时间 2022-04-01
印刷时间 2022-04-01
正文语种
读者对象 本科及以上
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 746
CIP核字 2022014870
中图分类号 TP181
丛书名
印张 31.25
印次 1
出版地 北京
240
171
22
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数 1500
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/17 12:56:05