首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 代数拓扑导论
内容
编辑推荐

This textbook is designed to introduce advanced undergraduate or beginning graduate students to algebraic topology as painlessly as possible. The principal topics treated are 2-dimensional manifolds, the fundamental group, and covering spaces, plus the group theory needed in these topics. The only prerequisites are some group theory, such as that normally contained in an undergraduate algebra course on the junior-senior level, and a one-semester undergraduate course in general topology.

目录

CHAPTER ONE Two-Dimensional Manifolds

 1 Introduction

 2 Definition and examples of n-manifolds

 3 Orientable vs. nonorientable manifolds

 4 Examples of compact, connected 2-manifolds

 5 Statement of the classification theorem for compact surfaces

 6 Triangulations of compact surfaces

 7 Proof of Theorem 5.1

 8 The Euler characteristic of a surface

 9 Manifolds with boundary

 10 The classification of compact, connected 2-manifolds with boundary

 11 The Euler characteristic of a bordered surface

 12 Models of compact bordered surfaces in Euclidean 3-space

 13 Remarks on noncompact surfaces

CHAPTER TWO The Fundamental Group

 1 Introduction

 2 Basic notation and terminology

 3 Definition of the fundamental group of a space

 4 The effect of a continuous mapping on the fundamental group

 5 The fundamental group of a circle is infinite cyelic

 6 Application: The Brouwer fixed-point theorem in dimension 2

 7 The fundamental group of a product space

 8 Homotopy type and homotopy equivalence of spaces

CHAPTER THREE Free Groups and Free Products of Groups

 1 Introduction

 2 The weak product of abelian groups

 3 Free abelian groups

 4 Free products of groups

 5 Free groups

 6 The presentation of groups by generators and relations

 7 Universal mapping problems

CHAPTER FOUR Seifert and Van Kampen Theorem on the Fundamental Group of the Union of Two Spaces.Applica tions

 1 Introduction

 2 Statement and proof of the theorem of Seifert and Van Kampen

 3 First application of Theorem 2.1

 4 Second application of Theorem 2.1

 5 Structure of the fundamental group of a compact surface

 6 Application to knot theory

CHAPTER FIVE Covering Spaces

 1 Introduction

 2 Definition and some examples of covering spaces

 3 Lifting of paths to a covering space

 4 The fundamental group of a covering space

 5 Lifting of arbitrary maps to a covering space

 6 Homomorphisms and automorphisms of covering spaces

 7 The action of the group π(X, x) on the set p-τ(x)

 8 Regular covering spaces and quotient spaces

 9 Application: The Borsuk-Ulam theorem for the 2-sphere

 10 The existence theorem for covering spaces

 ll The induced covering space over a subspace

 12 Point set topology of covering spaces

CHAPTER SIX The Fundamental Group and Covering Spaces of a Graph.

 Applications to Group Theory

 1 Introduction

 2 Definition and examples

 3 Basic properties of graphs

 4 Trees

 5 The fundamental group of a graph

 6 The Euler characteristic of a finite graph

 7 Covering spaces of a graph

 8 Generators for a subgroup of free group

CHAPTER SEVEN The Fundamental Group of Higher Dimensional Spaces

 1 Introduction

 2 Adjunction of 2-cells to a space

 3 Adjunction of higher dimensional cells to a space

 4 CW-complexes

 5 The Kurosh subgroup theorem

 6 Grushko's Theorem

CHAPTER EIGHT

Epilogue

APPENDIX A

The Quotient Space or |dentification Space Topology

 1 Definitions and basic properties

 2 A generalization of the quotient space topology

 3 Quotient spaces and product spaces

 4 Subspaee of a quotient space vs. quotient space of a subspace

 5 Conditions for a quotient space to be a Hausdorff space

APPENDIX B

Permutation Groups or Transformation Groups

 1 Basic definitions

 2 Homogeneous G-spaces

Index

标签
缩略图
书名 代数拓扑导论
副书名
原作名
作者 (美)梅西
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510004421
开本 24开
页数 261
版次 1
装订 平装
字数
出版时间 2009-04-01
首版时间 2009-04-01
印刷时间 2009-04-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.356
CIP核字
中图分类号 O189.2
丛书名
印张 12
印次 1
出版地 北京
225
149
13
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/10 16:06:23