图书 | 统计学习理论的本质(第2版英文版香农信息科学经典) |
内容 | 内容推荐 统计学习理论是针对小样本情况研究统计学习规律的理论,是传统统汁学的重要发展和补充,为研究有限样本情况下机器学习的理论和方法提供了理论框架,其核心思想是通过控制学习机器的容量实现对推广能力的控制。在这一理论中发展出的支持向量机方法是一种新的通用学习机器,较以往方法表现出很多理论和实践上的优势。本书是该领域的权威著作,由该领域的创立者来讲述统计学习理论的本质,着重介绍了统计学习理论和支持向量机的关键思想、结论和方法,以及该领域的新进展。 目录 Preface to the Second Edition Preface to the First Edition Introduction: Four Periods in the Research of the Learning Problem Rosenblatt's Perceptron (The 1960s) Construction of the Fundamentals of Learning Theory(The 1960s–1970s) Neural Networks (The 1980s) Returning to the Origin (The 1990s) Chapter 1 Setting of the Learning Problem 1.1 Function Estimation Model 1.2 The Problem of Risk Minimization 1.3 Three Main Learning Problems 1.3.1 Pattern Recognition 1.3.2 Regression Estimation 1.3.3 Density Estimation (Fisher–Wald Setting) 1.4 The General Setting of the Learning Problem 1.5 The Empirical Risk Minimization (ERM) Inductive Principle 1.6 The Four Parts of Learning Theory 1.7 The Classical Paradigm of Solving Learning Problems 1.7.1 Density Estimation Problem (MaximumLikelihood Method) 1.7.2 Pattern Recognition (Discriminant Analysis) Problem 1.7.3 Regression Estimation Model 1.7.4 Narrowness of the ML Method 1.8 Nonparametric Methods of Density Estimation 1.8.1 Parzen's Windows 1.8.2 The Problem of Density Estimation Is Ill-Posed 1.9 Main Principle for Solving Problems Using a Restricted Amount of Information 1.10 Model Minimization of the Risk Based on Empirical Data 1.10.1 Pattern Recognition 1.10.2 Regression Estimation 1.10.3 Density Estimation 1.11 Stochastic Approximation Inference Chapter 2 Consistency of Learning Processes 2.1 The Classical Definition of Consistency and the Concept of Nontrivial Consistency 2.2 The Key Theorem of Learning Theory 2.2.1 Remark on the ML Method 2.3 Necessary and Sufficient Conditions for Uniform Two-Sided Convergence 2.3.1 Remark on Law of Large Numbers and Its Generalization 2.3.2 Entropy of the Set of Indicator Functions 2.3.3 Entropy of the Set of Real Functions 2.3.4 Conditions for Uniform Two-Sided Convergence 2.4 Necessary and Sufficient Conditions for Uniform One-Sided Convergence 2.5 Theory of Nonfalsifiability 2.5.1 Kant's Problem of Demarcation and Popper's Theory of Nonfalsifiability 2.6 Theorems on Nonfalsifiability 2.6.1 Case of Complete (Popper's) Nonfalsifiability 2.6.2 Theorem on Partial Nonfalsifiability 2.6.3 Theorem on Potential Nonfalsifiability 2.7 Three Milestones in Learning Theory Informal Reasoning and Comments 2.8 The Basic Problems of Probability Theory and Statistics 2.8.1 Axioms of Probability Theory 2.9 Two Modes of Estimating a Probability Measure …… Chapter 3 Bounds on the Rate of Convergence ofLearning Processes Chapter 4 Controlling the Generalization Ability of Learning Processes Chapter 5 Methods of Pattern Recognition Chapter 6 Methods of Function Estimation Chapter 7 Direct Methods in Statistical Learning Theory Chapter 8 The Vicinal Risk Minimization Principle and the SVMs Chapter 9 Conclusion: What Is Important inLearning Theory? References Index |
标签 | |
缩略图 | ![]() |
书名 | 统计学习理论的本质(第2版英文版香农信息科学经典) |
副书名 | |
原作名 | |
作者 | (美)弗拉基米尔·万普尼克 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787519296858 |
开本 | 16开 |
页数 | 314 |
版次 | 1 |
装订 | 平装 |
字数 | 314 |
出版时间 | 2023-01-01 |
首版时间 | 2023-01-01 |
印刷时间 | 2023-01-01 |
正文语种 | 英 |
读者对象 | 普通大众 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 经济金融-金融会计-会计 |
图书小类 | |
重量 | 514 |
CIP核字 | 2022131076 |
中图分类号 | C8 |
丛书名 | |
印张 | 21.75 |
印次 | 1 |
出版地 | 陕西 |
长 | 241 |
宽 | 170 |
高 | 15 |
整理 | |
媒质 | |
用纸 | |
是否注音 | |
影印版本 | |
出版商国别 | |
是否套装 | |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。