首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 跟我一起学机器学习/计算机技术开发与应用丛书
内容
内容推荐
本书系统地阐述机器学习中常见的几类算法模型,包括模型的思想、原理及实现细节等。同时,本书还结合了当前热门的机器学习框架sklearn,对书中所涉及的模型在用法上进行详细讲解。
全书共10章,第1章介绍机器学习开发环境的配置;第2章讲解线性回归模型的基本原理、回归模型中常见的几种评价指标,以及用于有监督模型训练的梯度下降算法;第3章介绍逻辑回归模型的基本原理和分类模型中常见的几种评价指标;第4章介绍模型的改善与泛化,包括特征标准化、如何避免过拟合及如何进行模型选择等;第5章讲解K近邻分类算法的基本原理及kd树的构造与搜索;第6章介绍朴素贝叶斯算法的基本原理;第7章介绍几种常见的文本特征提取与模型复用,包括词袋模型和TF-IDF等;第8章讲解决策树与集成学习,包括几种经典的决策树生成算法和集成模型;第9章介绍支持向量机的基本原理与求解过程;第10章介绍几种经典的聚类算法及相应的评价指标计算方法。
本书包含大量的代码示例及实际案例介绍,可以作为计算机相关专业学生入门机器学习的读物,也可以作为非计算机专业及培训机构的参考用书。
作者简介
王成,华东交通大学计算机应用技术硕士毕业,机器学习领域CSDN与知乎专栏常驻作者。
目录
第1章 环境配置
1.1 安装Conda
1.1.1 Windows环境
1.1.2 Linux环境
1.2 替换源
1.3 Conda环境管理
1.3.1 虚拟环境安装
1.3.2 虚拟环境使用
1.4 PyCharm安装与配置
1.5 小结
第2章 线性回归
2.1 模型的建立与求解
2.1.1 理解线性回归模型
2.1.2 建立线性回归模型
2.1.3 求解线性回归模型
2.1.4 sklearn简介
2.1.5 安装sklearn及其他库
2.1.6 线性回归示例代码
2.1.7 小结
2.2 多变量线性回归
2.2.1 理解多变量
2.2.2 多变量线性回归建模
2.2.3 多变量回归示例代码
2.3 多项式回归
2.3.1 理解多项式
2.3.2 多项式回归建模
2.3.3 多项式回归示例代码
2.3.4 小结
2.4 回归模型评估
2.4.1 常见回归评估指标
2.4.2 回归指标示例代码
2.4.3 小结
2.5 梯度下降
2.5.1 方向导数与梯度
2.5.2 梯度下降算法
2.5.3 小结
2.6 正态分布
2.6.1 一个问题的出现
2.6.2 正态分布
2.7 目标函数推导
2.7.1 目标函数
2.7.2 求解梯度
2.7.3 矢量化计算
2.7.4 从零实现线性回归
2.7.5 小结
第3章 逻辑回归
3.1 模型的建立与求解
3.1.1 理解逻辑回归模型
3.1.2 建立逻辑回归模型
3.1.3 求解逻辑回归模型
3.1.4 逻辑回归示例代码
3.1.5 小结
3.2 多变量与多分类
3.2.1 多变量逻辑回归
3.2.2 多分类逻辑回归
3.2.3 多分类示例代码
3.2.4 小结
3.3 常见的分类评估指标
3.3.1 二分类场景
3.3.2 二分类指标示例代码
3.3.3 多分类场景
……
第4章 模型的改善与泛化
第5章 K近邻
第6章 朴素贝叶斯
第7章 文本特征提取与模型复用
第8章 决策树与集成学习
第9章 支持向量机
第10章 聚类
标签
缩略图
书名 跟我一起学机器学习/计算机技术开发与应用丛书
副书名
原作名
作者
译者
编者 王成//黄晓辉
绘者
出版社 清华大学出版社
商品编码(ISBN) 9787302592846
开本 16开
页数 227
版次 1
装订 平装
字数 346
出版时间 2022-07-01
首版时间 2022-07-01
印刷时间 2022-07-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 434
CIP核字 2021200449
中图分类号 TP181
丛书名
印张 15.5
印次 1
出版地 北京
240
185
11
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数 2000
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/17 12:18:00