首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 深度学习及加速技术(入门与实践)/智能系统与技术丛书
内容
内容推荐
本书紧密围绕深度学习及加速技术的基础理论与应用案例展开叙述,实现了深度学习算法设计与硬件加速技术的有机统一,是一本基础理论与实践案例相结合的实用图书。其具体内容涉及人工智能基本概念,神经网络数学基础、神经网络基本结构与学习策略、反向传播算法数学原理与训练机制等神经网络基础理论,以及一些高级主题和实践。本书可作为从事人工智能领域算法研究、架构设计与应用实现等工作的科研人员、工程师以及高等院校师生的参考书籍。
目录
CONTENTS<br />目  录<br /><br />前言<br />理论篇<br />第1章 人工智能简介2<br />1.1 人工智能概念2<br />1.1.1 人工智能定义2<br />1.1.2 人工智能发展历程3<br />1.2 人工智能与深度学习4<br />1.2.1 人工智能与深度学习之间<br />的关系4<br />1.2.2 图灵机与丘奇-图灵论题5<br />1.3 人工智能发展阶段6<br />1.3.1 人工智能1.0——知识+<br />算法+算力6<br />1.3.2 人工智能2.0——数据+<br />算法+算力7<br />1.3.3 人工智能3.0——知识+<br />数据+算法+算力7<br />1.3.4 人工智能4.0——存算<br />一体化8<br />1.4 人工智能应用9<br />1.4.1 工业零部件尺寸测量与<br />缺陷检测9<br />1.4.2 目标检测与跟踪9<br />1.4.3 人脸比对与识别10<br />1.4.4 三维影像重构10<br />第2章 神经网络数学基础12<br />2.1 线性向量空间12<br />2.2 内积14<br />2.3 线性变换与矩阵表示15<br />2.4 梯度17<br />第3章 神经网络与学习规则20<br />3.1 神经元模型与网络结构20<br />3.1.1 神经元模型20<br />3.1.2 神经网络结构22<br />3.2 感知机学习24&a
mp;lt;br />3.2.1 感知机定义及结构24<br />3.2.2 感知机学习规则25<br />3.3 Hebb学习28<br />3.3.1 无监督Hebb学习28<br />3.3.2 有监督Hebb学习29<br />3.4 性能学习30<br />3.4.1 性能指数30<br />3.4.2 梯度下降法31<br />3.4.3 随机梯度下降法32<br />第4章 反向传播33<br />4.1 LMS算法33<br />4.2 反向传播算法35<br />4.2.1 性能指数36<br />4.2.2 链式法则36<br />4.2.3 反向传播计算敏感性38<br />4.2.4 反向传播算法总结39<br />4.3 反向传播算法变形39<br />4.3.1 批数据训练法40<br />4.3.2 动量训练法40<br />4.3.3 标准数值优化技术42<br />4.4 反向传播算法实例分析42<br />第5章 卷积神经网络45<br />5.1 卷积神经网络基础45<br />5.1.1 全连接神经网络与卷积<br />神经网络45<br />5.1.2 卷积神经网络组成结构46<br />5.1.3 卷积神经网络进化史50<br />5.2 LeNet50<br />5.2.1 LeNet结构51<br />5.2.2 LeNet特点52<br />5.3 AlexNet52<br />5.3.1 AlexNet结构52<br />5.3.2 AlexNet特点54<br />5.4 VGGNet54<b
r />5.4.1 VGG16结构55<br />5.4.2 VGG16特点57<br />5.5 GoogLeNet57<br />5.5.1 Inception结构57<br />5.5.2 GoogLeNet结构——基于Inception V1模块59<br />5.5.3 GoogLeNet特点62<br />5.6 ResNet62<br />5.6.1 ResNet残差块结构63<br />5.6.2 ResNet结构63<br />5.6.3 ResNet特点66<br />第6章 目标检测与识别67<br />6.1 R-CNN67<br />6.1.1 基于SS方法的候选区域<br />选择68<br />6.1.2 候选区域预处理68<br />6.1.3 CNN特征提取69<br />6.1.4 SVM目标分类69<br />6.1.5 Bounding box回归70<br />6.2 Fast R-CNN70<br />6.2.1 基于SS方法的候选区域<br />生成71<br />6.2.2 CNN分类与回归71<br />6.2.3 Fast R-CNN目标检测<br /> 算法特点72<br />6.3 Faster R-CNN73<br />6.3.1 CNN特征提取73<br />6.3.2 RPN候选框生成74<br />6.3.3 CNN分类与回归74<br />6.3.4 Faster R-CNN目标检测<br />算法特点75<br />6.4 YOLO75<br />6.4.1 YOLOv175<br />6.4.2 YOLOv27
7<br />6.4.3 YOLOv380<br />第7章 深度学习优化技术83<br />7.1 梯度消失83<br />7.2 过拟合85<br />7.2.1 增加训练数据集85<br />7.2.2 regularization86<br />7.2.3 dropout技术88<br />7.3 初始值与学习速度89<br />7
标签
缩略图
书名 深度学习及加速技术(入门与实践)/智能系统与技术丛书
副书名
原作名
作者
译者
编者 白创
绘者
出版社 机械工业出版社
商品编码(ISBN) 9787111728719
开本 16开
页数 199
版次 1
装订 平装
字数 281
出版时间 2023-06-01
首版时间 2023-06-01
印刷时间 2023-06-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 362
CIP核字 2023052171
中图分类号 TP181
丛书名
印张 13
印次 1
出版地 北京
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/7 23:26:03