图书 | 深度学习及加速技术(入门与实践)/智能系统与技术丛书 |
内容 | 内容推荐 本书紧密围绕深度学习及加速技术的基础理论与应用案例展开叙述,实现了深度学习算法设计与硬件加速技术的有机统一,是一本基础理论与实践案例相结合的实用图书。其具体内容涉及人工智能基本概念,神经网络数学基础、神经网络基本结构与学习策略、反向传播算法数学原理与训练机制等神经网络基础理论,以及一些高级主题和实践。本书可作为从事人工智能领域算法研究、架构设计与应用实现等工作的科研人员、工程师以及高等院校师生的参考书籍。 目录 CONTENTS<br />目 录<br /><br />前言<br />理论篇<br />第1章 人工智能简介2<br />1.1 人工智能概念2<br />1.1.1 人工智能定义2<br />1.1.2 人工智能发展历程3<br />1.2 人工智能与深度学习4<br />1.2.1 人工智能与深度学习之间<br />的关系4<br />1.2.2 图灵机与丘奇-图灵论题5<br />1.3 人工智能发展阶段6<br />1.3.1 人工智能1.0——知识+<br />算法+算力6<br />1.3.2 人工智能2.0——数据+<br />算法+算力7<br />1.3.3 人工智能3.0——知识+<br />数据+算法+算力7<br />1.3.4 人工智能4.0——存算<br />一体化8<br />1.4 人工智能应用9<br />1.4.1 工业零部件尺寸测量与<br />缺陷检测9<br />1.4.2 目标检测与跟踪9<br />1.4.3 人脸比对与识别10<br />1.4.4 三维影像重构10<br />第2章 神经网络数学基础12<br />2.1 线性向量空间12<br />2.2 内积14<br />2.3 线性变换与矩阵表示15<br />2.4 梯度17<br />第3章 神经网络与学习规则20<br />3.1 神经元模型与网络结构20<br />3.1.1 神经元模型20<br />3.1.2 神经网络结构22<br />3.2 感知机学习24&a mp;lt;br />3.2.1 感知机定义及结构24<br />3.2.2 感知机学习规则25<br />3.3 Hebb学习28<br />3.3.1 无监督Hebb学习28<br />3.3.2 有监督Hebb学习29<br />3.4 性能学习30<br />3.4.1 性能指数30<br />3.4.2 梯度下降法31<br />3.4.3 随机梯度下降法32<br />第4章 反向传播33<br />4.1 LMS算法33<br />4.2 反向传播算法35<br />4.2.1 性能指数36<br />4.2.2 链式法则36<br />4.2.3 反向传播计算敏感性38<br />4.2.4 反向传播算法总结39<br />4.3 反向传播算法变形39<br />4.3.1 批数据训练法40<br />4.3.2 动量训练法40<br />4.3.3 标准数值优化技术42<br />4.4 反向传播算法实例分析42<br />第5章 卷积神经网络45<br />5.1 卷积神经网络基础45<br />5.1.1 全连接神经网络与卷积<br />神经网络45<br />5.1.2 卷积神经网络组成结构46<br />5.1.3 卷积神经网络进化史50<br />5.2 LeNet50<br />5.2.1 LeNet结构51<br />5.2.2 LeNet特点52<br />5.3 AlexNet52<br />5.3.1 AlexNet结构52<br />5.3.2 AlexNet特点54<br />5.4 VGGNet54<b r />5.4.1 VGG16结构55<br />5.4.2 VGG16特点57<br />5.5 GoogLeNet57<br />5.5.1 Inception结构57<br />5.5.2 GoogLeNet结构——基于Inception V1模块59<br />5.5.3 GoogLeNet特点62<br />5.6 ResNet62<br />5.6.1 ResNet残差块结构63<br />5.6.2 ResNet结构63<br />5.6.3 ResNet特点66<br />第6章 目标检测与识别67<br />6.1 R-CNN67<br />6.1.1 基于SS方法的候选区域<br />选择68<br />6.1.2 候选区域预处理68<br />6.1.3 CNN特征提取69<br />6.1.4 SVM目标分类69<br />6.1.5 Bounding box回归70<br />6.2 Fast R-CNN70<br />6.2.1 基于SS方法的候选区域<br />生成71<br />6.2.2 CNN分类与回归71<br />6.2.3 Fast R-CNN目标检测<br /> 算法特点72<br />6.3 Faster R-CNN73<br />6.3.1 CNN特征提取73<br />6.3.2 RPN候选框生成74<br />6.3.3 CNN分类与回归74<br />6.3.4 Faster R-CNN目标检测<br />算法特点75<br />6.4 YOLO75<br />6.4.1 YOLOv175<br />6.4.2 YOLOv27 7<br />6.4.3 YOLOv380<br />第7章 深度学习优化技术83<br />7.1 梯度消失83<br />7.2 过拟合85<br />7.2.1 增加训练数据集85<br />7.2.2 regularization86<br />7.2.3 dropout技术88<br />7.3 初始值与学习速度89<br />7 |
标签 | |
缩略图 | ![]() |
书名 | 深度学习及加速技术(入门与实践)/智能系统与技术丛书 |
副书名 | |
原作名 | |
作者 | |
译者 | |
编者 | 白创 |
绘者 | |
出版社 | 机械工业出版社 |
商品编码(ISBN) | 9787111728719 |
开本 | 16开 |
页数 | 199 |
版次 | 1 |
装订 | 平装 |
字数 | 281 |
出版时间 | 2023-06-01 |
首版时间 | 2023-06-01 |
印刷时间 | 2023-06-01 |
正文语种 | 汉 |
读者对象 | 普通大众 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | |
图书小类 | |
重量 | 362 |
CIP核字 | 2023052171 |
中图分类号 | TP181 |
丛书名 | |
印张 | 13 |
印次 | 1 |
出版地 | 北京 |
长 | |
宽 | |
高 | |
整理 | |
媒质 | |
用纸 | |
是否注音 | |
影印版本 | |
出版商国别 | |
是否套装 | |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。