首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 基于联合稀疏的信号检测与恢复方法研究(英文版)(精)/清华大学优秀博士学位论文丛书
内容
内容推荐
本书围绕联合稀疏信号的检测和恢复,主要研究了联合稀疏信号的检测方法及其检测性能界限、联合稀疏信号的恢复方法及其在雷达成像问题中的应用;介绍了基于局部最大势检验的联合稀疏信号检测方法,分析了该方法在模拟数据、低比特量化数据、高斯和广义高斯噪声情形下的理论检测性能。同时,介绍了一种基于前瞻基信号选择和双块稀疏性的联合稀疏信号恢复方法,并以多极化雷达成像为应用实例,介绍了联合稀疏信号的恢复方法;通过改善雷达图像中非零像素点的聚集程度和抑制目标区域外的能量泄露,提升了雷达的成像质量。
本书可供从事通信、雷达等信号处理的研究人员参考、学习。
作者简介
王学谦,Xueqian Wang received the B.S. and Ph.D. degrees in Electronic Engineering fromthe University of Electronic Science and Technology of China, Chengdu, China, in2015, and Tsinghua University, Beijing, China, in 2020, both with the highest honors.From 2018 to2019, he visited Syracuse University, Syracuse,NY,USA. From 2020 to2022, he was a Post-Doctoral Fellow with the Department of Electronic Engineering,Tsinghua University, Beijing, China. He is currently an Assistant Professor withthe Department of Electronic Engineering, Tsinghua University. His main researchinterests include target detection, information fusion, remote sensing, radar imaging,and distributed signal processing.
He has authored or coauthored 50 journal and conference papers. He is an IEEEMember and a reviewer for IEEE Transactions on Geoscience and Remote Sensing,IEEE Transactions on Signal Processing, IEEE Transactions on Communications,IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, and so on. TheDoctoral Thesis of Xueqian Wang has received the award of "Excellent DoctoralThesis of China Education Society of Electronics" and "Excellent Doctoral Thesisof Tsinghua University". He has received the awards of 2020 Postdoctoral Inno-vative Talent Support Program, 2020 Outstanding Graduate of Beijing, and 2022Outstanding Postdoctoral Fellow of Tsinghua University.
目录
1 Introduction
1.1 Background
1.2 Related Works
1.2.1 Detection Methods for Jointly Sparse Signals
1.2.2 Recovery Methods for Jointly Sparse Signals
1.3 Main Content and Organization
References
2 Detection of Jointly Sparse Signals via Locally Most Powerful Tests with Gaussian Noise
2.1 Introduction
2.2 Signal Model for Jointly Sparse Signal Detection
2.3 LMPT Detection Based on Analog Data
2.3.1 Detection Method
2.3.2 Theoretical Analysis of Detection Performance
2.4 LMPT Detection Based on Coarsely Quantized Data
2.4.1 Detection Method
2.4.2 Quantizer Design and the Effect of Quantization on Detection Performance
2.5 Simulation Results
2.5.1 Simulation Results of the LMPT Detector with Analog Data
2.5.2 Simulation Results of the LMPT Detector with Quantized Data
2.6 Conclusion
References
3 Detection of Jointly Sparse Signals via Locally Most Powerful Tests with Generalized Gaussian Model
3.1 Introduction
3.2 The LMPT Detector Based on Generalized Gaussian Model and Its Detection Performance
3.2.1 Generalized Gaussian Model
3.2.2 Signal Detection Method
3.2.3 Theoretical Analysis of Detection Performance
3.3 Quantizer Design and Analysis of Asymptotic Relative Efficiency
3.3.1 Quantizer Design
3.3.2 Asymptotic Relative Ef?ciency
3.4 Simulation Results
3.5 Conclusion
References
4 Jointly Sparse Signal Recovery Method Based on Look-Ahead-Atom-Selection
4.1 Introduction
4.2 Background of Recovery of Jointly Sparse Signals
4.3 Signal Recovery Method Based on Look-Ahead-Atom-Selection and Its Performance Analysis
4.3.1 Signal Recovery Method
4.3.2 Performance Analysis
4.4 Experimental Results
4.5 Conclusion
References
5 Signal Recovery Methods Based on Two-Level Block Sparsity
5.1 Introduction
5.2 Signal Recovery Method Based on Two-Level Block Sparsity with Analog Measurements
5.2.1 PGM-Based Two-Level Block Sparsity
5.2.2 Two-Level Block Matching Pursuit
5.3 Signal Recovery Method Based on Two-Level Block Sparsity with 1-Bit Measurements
5.3.1 Background of Sparse Signal Recovery Based on 1-Bit Measurements
5.3.2 Enhanced-Binary Iterative Hard Thresholding
5.4 Simulated and Experimental Results
5.4.1 Simulated and Experimental Results Based on Analog Data
5.4.2 Simulated and Experimental Results Based on 1-Bit Data
5.5 Conclusion
References
6 Summary and Perspectives
6.1 Summary
6.2 Perspectives
References
Appendix A: Proof of (2.61)
Appendix B: Proof of Lemma 1
Appendix C: Proof of (3.6)
Appendix D: Proof of Theorem 1
Appendix E: Proof of Lemma 2
About the Author
标签
缩略图
书名 基于联合稀疏的信号检测与恢复方法研究(英文版)(精)/清华大学优秀博士学位论文丛书
副书名
原作名
作者 王学谦
译者
编者
绘者
出版社 清华大学出版社
商品编码(ISBN) 9787302620006
开本 16开
页数 120
版次 1
装订 精装
字数 203
出版时间 2023-11-01
首版时间 2023-11-01
印刷时间 2023-11-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-工业科技-电子通讯
图书小类
重量 350
CIP核字 2022185402
中图分类号 TN957.51
丛书名
印张 9
印次 1
出版地 北京
241
162
13
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/10 14:26:09