首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 TENSORFLOW程序设计
内容
内容推荐
本书全面介绍TensorFlow 2.x 框架及其在深度学习中的应用,内容包括TensorFlow 简介、Python 语 言基础、环境搭建与入门、TensorBoard 可视化、多层感知机实现、卷积神经网络实现、循环神经网络实 现、强化学习、迁移学习、生成对抗网络和GPU 并行计算等。
目录
第1 章 TensorFlow 简介 ·············································································.1
1.1 人工智能的编程框架 ................................................................................................. 1
1.1.1 人工智能的发展 ............................................................................................. 1
1.1.2 人工智能、机器学习和深度学习之间的关系 ............................................. 2
1.2 TensorFlow 与人工智能 ............................................................................................ 3
1.3 TensorFlow 数据模型 ................................................................................................ 4
1.4 TensorFlow 计算模型和运行模型 ............................................................................ 5
1.5 实验:矩阵运算 ......................................................................................................... 9
1.5.1 实验目的 ......................................................................................................... 9
1.5.2 实验要求 ......................................................................................................... 9
1.5.3 实验原理 ......................................................................................................... 9
1.5.4 实验步骤 ....................................................................................................... 10
习题 .................................................................................................................................... 10
第2 章 Python 语言基础 ············································································.11
2.1 Python 语言 ............................................................................................................... 11
2.1.1 Python 语言的发展 ....................................................................................... 11
2.1.2 Python 安装 ................................................................................................... 12
2.2 基础语法 ................................................................................................................... 13
2.2.1 基础知识 ....................................................................................................... 13
2.2.2 基本程序编写 ............................................................................................... 15
2.2.3 条件语句 ....................................................................................................... 16
2.2.4 循环语句 ....................................................................................................... 17
2.3 数据结构 ................................................................................................................... 18
2.4 面向对象特性 ........................................................................................................... 21
2.4.1 类和对象 ....................................................................................................... 21
2.4.2 类的定义 ....................................................................................................... 22
2.4.3 根据类创建对象 ........................................................................................... 22
2.4.4 构造方法与析构方法 ................................................................................... 23
2.5 其他高级特性 ........................................................................................................... 24
2.5.1 函数高级特性 ............................................................................................... 24
2.5.2 闭包 ............................................................................................................... 25
2.6 实验:Python 基本语法的实现 ............................................................................... 26
2.6.1 实验目的 ....................................................................................................... 26
2.6.2 实验要求 ....................................................................................................... 26
2.6.3 实验题目 ....................................................................................................... 26
2.6.4 实验步骤 ....................................................................................................... 27
习题 .................................................................................................................................... 28
第3 章 环境搭建与入门 ·············································································.30
3.1 开发平台简介 ........................................................................................................... 30
3.2 开发环境部署 ........................................................................................................... 30
3.2.1 安装Anaconda .............................................................................................. 30
3.2.2 安装TensorFlow ........................................................................................... 32
3.2.3 PyCharm 下载与安装 ................................................................................... 32
3.3 一个简单的实例 ....................................................................................................... 34
习题 .................................................................................................................................... 36
第4 章 TensorBoard 可视化 ········································································.37
4.1 什么是TensorBoard.................................................................................................. 37
4.2 基本流程与结构 ....................................................................................................... 37
4.3 图表的可视化 ........................................................................................................... 39
4.3.1 计算图和会话 ............................................................................................... 39
4.3.2 可视化过程 ................................................................................................... 40
4.4 监控指标的可视化 ................................................................................................... 41
4.4.1 Scalar ............................................................................................................. 41
4.4.2 Images ........................................................................................................... 41
4.4.3 Histogram ...................................................................................................... 41
4.4.4 Merge_all....................................................................................................... 42
4.5 学习过程的可视化 ................................................................................................... 42
4.5.1 数据序列化 ................................................................................................... 43
4.5.2 启动TensorBoard ......................................................................................... 43
4.6 实验:TensorBoard 可视化实现 .............................................................................. 44
4.6.1 实验目的 ....................................................................................................... 44
4.6.2 实验要求 ....................................................................................................... 44
4.6.3 实验原理 ....................................................................................................... 45
4.6.4 实验步骤 ....................................................................................................... 45
习题 .................................................................................................................................... 49
第5 章 多层感知机实现 ·············································································.50
5.1 感知机 ....................................................................................................................... 50
5.1.1 感知机的定义 ............................................................................................... 50
5.1.2 感知机的神经元模型 ................................................................................... 51
5.1.3 感知机的学习算法 ....................................................................................... 51
5.1.4 感知机的性质 ............................................................................................... 52
5.2 多层感知机与前向传播 ........................................................................................... 53
5.2.1 多层感知机基本结构 ................................................................................... 53
5.2.2 多层感知机的特点 ....................................................................................... 54
5.3 前向传播 ................................................................................................................... 55
5.3.1 前向传播的计算过程 ................................................................................... 55
5.3.2 前向传播算法 ............................................................................................... 57
5.4 梯度下降 ................................................................................................................... 57
5.4.1 梯度 ............................................................................................................... 57
5.4.2 梯度下降的直观解释 ................................................................................... 58
5.4.3 梯度下降法的相关概念 ............................................................................... 58
5.4.4 梯度下降法的数学描述 ............................................................................... 59
5.4.5 梯度下降法的算法调优 ............................................................................... 60
5.4.6 常见的梯度下降法 ....................................................................................... 60
5.5 反向传播 ................................................................................................................... 61
5.5.1 反向传播算法要解决的问题 ....................................................................... 61
5.5.2 反向传播算法的基本思路 ........................................................................... 61
5.5.3 反向传播算法的流程 ................................................................................... 63
5.6 数据集 ....................................................................................................................... 64
5.6.1 训练集、测试集和验证集 ........................................................................... 64
5.6.2 MNIST 数据集 ............................................................................................. 64
5.7 多层感知机的实现 ................................................................................................... 66
5.7.1 NumPy 多层感知机的实现 .......................................................................... 66
5.7.2 TensorFlow 多层感知机的实现 ................................................................... 69
5.8 实验:基于Keras 多层感知机的MNIST 手写数字识别 ...................................... 72
5.8.1 Keras 简介 ..................................................................................................... 72
5.8.2 实验目的 ....................................................................................................... 73
5.8.3 实验要求 ....................................................................................................... 73
5.8.4 实验步骤 ....................................................................................................... 73
习题 .................................................................................................................................... 77
第6 章 卷积神经网络实现 ··········································································.78
6.1 CNN 基本原理 .......................................................................................................... 78
6.2 CNN 的卷积操作 ...................................................................................................... 80
6.3 CNN 的池化操作 ...................................................................................................... 82
6.4 使用简单的CNN 实现手写字符识别 ..................................................................... 84
6.5 AlexNet ..................................................................................................................... 85
6.6 实验:基于VGG16 模型的图像分类实现 ............................................................. 87
6.6.1 实验目的 ....................................................................................................... 87
6.6.2 实验要求 ....................................................................................................... 87
6.6.3 实验原理 ....................................................................................................... 88
6.6.4 实验步骤 ....................................................................................................... 88
习题 .................................................................................................................................... 93
第7 章 循环神经网络实现 ··········································································.94
7.1 RNN 简介 .................................................................................................................. 94
7.1.1 为什么使用RNN.......................................................................................... 94
7.1.2 RNN 的网络结构及原理 .............................................................................. 96
7.1.3 RNN 的实现 ................................................................................................. 99
7.2 长短时记忆网络 ..................................................................................................... 100
7.2.1 长期依赖问题 ............................................................................................. 100
7.2.2 长短时记忆网络 ......................................................................................... 101
7.2.3 LSTM 的实现 ............................................................................................. 105
7.3 双向RNN ................................................................................................................ 106
7.3.1 双向RNN 的结构及原理 ........................................................................... 106
7.3.2 双向RNN 的实现....................................................................................... 107
7.4 深层RNN ................................................................................................................ 108
7.5 实验:基于LSTM 的股票预测 ............................................................................. 110
7.5.1 实验目的 ..................................................................................................... 110
7.5.2 实验要求 ..................................................................................................... 110
7.5.3 实验原理 ..................................................................................................... 111
7.5.4 实验步骤 ..................................................................................................... 111
习题 .................................................................................................................................. 114
第8 章 强化学习 ····················································································.115
8.1 强化学习原理 ......................................................................................................... 115
8.2 马尔可夫决策过程实现 ......................................................................................... 117
8.2.1 马尔可夫决策过程 ..................................................................................... 117
8.2.2 马尔可夫决策过程的形式化 ..................................................................... 118
8.3 基于价值的强化学习方法 ..................................................................................... 120
8.3.1 基于价值的方法中的策略优化 ................................................................. 120
8.3.2 基于价值的方法中的策略评估 ................................................................. 120
8.3.3 Q-Learning .................................................................................................. 122
8.4 Gym 的简单使用 .................................................................................................... 123
8.5 实验:基于强化学习的小车爬山游戏 ................................................................. 125
8.5.1 实验目的 ..................................................................................................... 125
8.5.2 实验要求 ..................................................................................................... 125
8.5.3 实验原理 ..................................................................................................... 125
8.5.4 实验步骤 ..................................................................................................... 127
习题 .................................................................................................................................. 130
第9 章 迁移学习 ····················································································.131
9.1 迁移学习原理 ......................................................................................................... 131
9.1.1 什么是迁移学习 ......................................................................................... 131
9.1.2 迁移学习的基本概念 ................................................................................. 131
9.1.3 迁移学习的基本方法 ................................................................................. 133
9.2 基于模型的迁移学习方法实现 ............................................................................. 134
9.2.1 导入已有的预训练模型 ............................................................................. 134
9.2.2 模型的复用 ................................................................................................. 134
9.2.3 基于新模型的预测 ..................................................................................... 135
9.3 基于VGG-19 的迁移学习实现 ............................................................................. 135
9.3.1 VGG-19 的原理 .......................................................................................... 135
9.3.2 基于VGG-19 的迁移学习的原理及实现 ................................................. 136
9.4 实验:基于Inception V3 的迁移学习 .................................................................. 138
9.4.1 实验目的 ..................................................................................................... 138
9.4.2 实验要求 ..................................................................................................... 138
9.4.3 实验原理 ..................................................................................................... 139
9.4.4 实验步骤 ..................................................................................................... 140
习题 .................................................................................................................................. 143
第10 章 生成对抗网络 ·············································································.144
10.1 GAN 概述 ............................................................................................................. 144
10.2 GAN 的目标函数 ................................................................................................. 144
10.3 GAN 的实现 ......................................................................................................... 145
10.4 深度卷积生成对抗网络 ....................................................................................... 149
10.4.1 DCGAN 结构图 ........................................................................................ 150
10.4.2 DCGAN 的实现 ........................................................................................ 150
10.5 GAN 的衍生模型 ................................................................................................. 153
10.5.1 基于网络结构的衍生模型 ....................................................................... 154
10.5.2 基于优化方法的衍生模型 ....................................................................... 155
习题 .................................................................................................................................. 156
第11 章 GPU 并行计算 ············································································.157
11.1 并行计算技术 ....................................................................................................... 157
11.1.1 单机并行计算 ........................................................................................... 157
11.1.2 分布式并行计算 ....................................................................................... 158
11.1.3 GPU 并行计算技术 .................................................................................. 159
11.1.4 TensorFlow 与GPU .................................................................................. 160
11.2 TensorFlow 加速方法 ........................................................................................... 163
11.3 单GPU 并行加速的实现 ..................................................................................... 170
11.4 多GPU 并行加速的实现 ..................................................................................... 173
11.5 实验:基于GPU 的矩阵乘法 ............................................................................. 175
11.5.1 安装GPU 版本的TensorFlow ................................................................. 175
11.5.2 一个GPU 程序 ......................................................................................... 176
11.5.3 使用GPU 完成矩阵乘法 ......................................................................... 176
习题 .................................................................................................................................. 177
标签
缩略图
书名 TENSORFLOW程序设计
副书名
原作名
作者 马斌
译者
编者
绘者
出版社 电子工业出版社
商品编码(ISBN) 9787121486661
开本 其他
页数 192
版次 1
装订
字数
出版时间 2024-09-01
首版时间
印刷时间 2024-09-01
正文语种
读者对象
适用范围
发行范围
发行模式 实体书
首发网站
连载网址
图书大类 教育考试-考试-计算机类
图书小类
重量
CIP核字
中图分类号 TP311.1
丛书名
印张
印次 1
出版地
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/9 1:01:38