概型理论是代数几何的基础,在代数几何的经典领域不变理论和曲线模中有了较好的发展。将代数数论和代数几何有机的结合起来,实现了早期数论学者们的愿望。这种结合使得数论中的一些主要猜测得以证明。
本书旨在建立起经典代数几何基本教程和概型理论之间的桥梁。例子讲解详实,努力挖掘定义背后的深层次东西。练习加深读者对内容的理解。学习本书的起点低,了解交换代数和代数变量的基本知识即可。本书揭示了概型和其他几何观点,如流形理论的联系。了解这些观点对学习本书是相当有益的,虽然不是必要。
图书 | 概型的几何 |
内容 | 编辑推荐 概型理论是代数几何的基础,在代数几何的经典领域不变理论和曲线模中有了较好的发展。将代数数论和代数几何有机的结合起来,实现了早期数论学者们的愿望。这种结合使得数论中的一些主要猜测得以证明。 本书旨在建立起经典代数几何基本教程和概型理论之间的桥梁。例子讲解详实,努力挖掘定义背后的深层次东西。练习加深读者对内容的理解。学习本书的起点低,了解交换代数和代数变量的基本知识即可。本书揭示了概型和其他几何观点,如流形理论的联系。了解这些观点对学习本书是相当有益的,虽然不是必要。 目录 Ⅰ Basic Definitions Ⅰ.1 Affine Schemes Ⅰ.1.1 Schemes as Sets Ⅰ.1.2 Schemes as Topological Spaces Ⅰ.1.3 An Interlude on Sheaf Theory References for the Theory of Sheaves Ⅰ.1.4 Schemes as Schemes (Structure Sheaves) Ⅰ.2 Schemes in General Ⅰ.2.1 Subschemes Ⅰ.2.2 The Local Ring at a Point Ⅰ.2.3 Morphisms Ⅰ.2.4 The Gluing Construction Projective Space Ⅰ.3 Relative Schemes Ⅰ.3.1 Fibered Products Ⅰ.3.2 The Category of S-Schemes Ⅰ.3.3 Global Spec Ⅰ.4 The Functor of Points Ⅱ Examples Ⅱ.1 Reduced Schemes over Algebraically Closed Fields Ⅱ.1.1 Affine Spaces Ⅱ.1.2 Local Schemes Ⅱ.2 Reduced Schemes over Non-Algebraically Closed Fields Ⅱ.3 Nonreduced Schemes Ⅱ.3.1 Double Points Ⅱ.3.2 Multiple Points Degree and Multiplicity Ⅱ.3.3 Embedded Points Primary Decomposition Ⅱ.3.4 Flat Families of Schemes Limits Examples Flatness Ⅱ.3.5 Multiple Lines Ⅱ.4 Arithmetic Schemes Ⅱ.4.1 Spec Z Ⅱ.4.2 Spec of the Ring of Integers in a Number Field Ⅱ.4.3 Affine Spaces over Spec Z Ⅱ.4.4 A Conic over Spec Z Ⅱ.4.5 Double Points in Al Ⅲ Projective Schemes Ⅲ.1 Attributes of Morphisms Ⅲ.1.1 Finiteness Conditions Ⅲ.1.2 Properness and Separation Ⅲ.2 Proj of a Graded Ring Ⅲ.2.1 The Construction of Proj S Ⅲ.2.2 Closed Subschemes of Proj R Ⅲ.2.3 Global Proj Proj of a Sheaf of Graded 0x-Algebras The Projectivization P(ε) of a Coherent Sheaf ε Ⅲ.2.4 Tangent Spaces and Tangent Cones Affine and Projective Tangent Spaces Tangent Cones Ⅲ.2.5 Morphisms to Projective Space Ⅲ.2.6 Graded Modules and Sheaves Ⅲ.2.7 Grassmannians Ⅲ.2.8 Universal Hypersurfaces Ⅲ.3 Invariants of Projective Schemes Ⅲ.3.1 Hilbert Functions and Hilbert Polynomials Ⅲ.3.2 Flatness Il: Families of Projective Schemes Ⅲ.3.3 Free Resolutions Ⅲ.3.4 Examples Points in the Plane Examples: Double Lines in General and in p3 Ⅲ.3.5 BEzout's Theorem Multiplicity of Intersections Ⅲ.3.6 Hilbert Series Ⅳ Classical Constructions Ⅳ.1 Flexes of Plane Curves Ⅳ.I.1 Definitions Ⅳ.1.2 Flexes on Singular Curves Ⅳ.1.3 Curves with Multiple Components Ⅳ.2 Blow-ups Ⅳ.2.1 Definitions and Constructions An Example: Blowing up the Plane Definition of Blow-ups in General The Blowup as Proj Blow-ups along Regular Subschemes Ⅳ.2.2 Some Classic Blow-Ups Ⅳ.2.3 Blow-ups along Nonreduced Schemes Blowing Up a Double Point Blowing Up Multiple Points The j-Fhnction Ⅳ.2.4 Blow-ups of Arithmetic Schemes Ⅳ.2.5 Project: Quadric and Cubic Surfaces as Blow-ups Ⅳ.3 Fano schemes Ⅳ.3.1 Definitions Ⅳ.3.2 Lines on Quadrics Lines on a Smooth Quadric over an Algebraically Closed Field Lines on a Quadric Cone A Quadric Degenerating to Two Planes More Examples Ⅳ.3.3 Lines on Cubic Surfaces Ⅳ.4 Forms Ⅴ Local Constructions Ⅴ.1 Images Ⅴ.1.1 The Image of a Morphism of Schemes Ⅴ.1.2 Universal Formulas Ⅴ.1.3 Fitting Ideals and Fitting Images Fitting Ideals Fitting Images Ⅴ.2 Resultants Ⅴ.2.1 Definition of the Resultant Ⅴ.2.2 Sylvester's Determinant Ⅴ.3 Singular Schemes and Discriminants Ⅴ.3.1 Definitions Ⅴ.3.2 Discriminants Ⅴ.3.3 Examples Ⅴ.4 Dual Curves Ⅴ.4.1 Definitions Ⅴ.4.2 Duals of Singular Curves Ⅴ.4.3 Curves with Multiple Components Ⅴ.5 Double Point Loci Ⅵ Schemes and Functors Ⅵ.1 The Functor of Points Ⅵ.I.1 Open and Closed Subfunetors Ⅵ.1.2 K-Rational Points Ⅵ.1.3 Tangent Spaces to a Functor Ⅵ.1.4 Group Schemes Ⅵ.2 Characterization of a Space by its Functor of Points Ⅵ.2.1 Characterization of Schemes among Functors Ⅵ.2.2 Parameter Spaces The Hilbert Scheme Examples of Hilbert Schemes Variations on the Hilbert Scheme Construction Ⅵ.2.3 Tangent Spaces to Schemes in Terms of Their Functors of Points Tangent Spaces to Hilbert Schemes Tangent Spaces to Fano Schemes Ⅵ.2.4 Moduli Spaces References Index |
标签 | |
缩略图 | ![]() |
书名 | 概型的几何 |
副书名 | |
原作名 | |
作者 | (美)艾森邦德 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787510004742 |
开本 | 24开 |
页数 | 294 |
版次 | 1 |
装订 | 平装 |
字数 | |
出版时间 | 2010-01-01 |
首版时间 | 2010-01-01 |
印刷时间 | 2010-01-01 |
正文语种 | 英 |
读者对象 | 青年(14-20岁),研究人员,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.382 |
CIP核字 | |
中图分类号 | O18 |
丛书名 | |
印张 | 13 |
印次 | 1 |
出版地 | 北京 |
长 | 224 |
宽 | 150 |
高 | 14 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。