首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 概型的几何
内容
编辑推荐

概型理论是代数几何的基础,在代数几何的经典领域不变理论和曲线模中有了较好的发展。将代数数论和代数几何有机的结合起来,实现了早期数论学者们的愿望。这种结合使得数论中的一些主要猜测得以证明。

本书旨在建立起经典代数几何基本教程和概型理论之间的桥梁。例子讲解详实,努力挖掘定义背后的深层次东西。练习加深读者对内容的理解。学习本书的起点低,了解交换代数和代数变量的基本知识即可。本书揭示了概型和其他几何观点,如流形理论的联系。了解这些观点对学习本书是相当有益的,虽然不是必要。

目录

Ⅰ Basic Definitions

 Ⅰ.1 Affine Schemes

Ⅰ.1.1 Schemes as Sets

Ⅰ.1.2 Schemes as Topological Spaces

Ⅰ.1.3 An Interlude on Sheaf Theory References for the Theory of Sheaves

Ⅰ.1.4 Schemes as Schemes (Structure Sheaves)

 Ⅰ.2 Schemes in General

Ⅰ.2.1 Subschemes

Ⅰ.2.2 The Local Ring at a Point

Ⅰ.2.3 Morphisms

Ⅰ.2.4 The Gluing Construction Projective Space

 Ⅰ.3 Relative Schemes

Ⅰ.3.1 Fibered Products

Ⅰ.3.2 The Category of S-Schemes

Ⅰ.3.3 Global Spec

 Ⅰ.4 The Functor of Points

Ⅱ Examples

 Ⅱ.1 Reduced Schemes over Algebraically Closed Fields

Ⅱ.1.1 Affine Spaces

Ⅱ.1.2 Local Schemes

 Ⅱ.2 Reduced Schemes over Non-Algebraically Closed Fields

 Ⅱ.3 Nonreduced Schemes

Ⅱ.3.1 Double Points

Ⅱ.3.2 Multiple Points

Degree and Multiplicity

Ⅱ.3.3 Embedded Points

Primary Decomposition

Ⅱ.3.4 Flat Families of Schemes

Limits

Examples

Flatness

Ⅱ.3.5 Multiple Lines

 Ⅱ.4 Arithmetic Schemes

Ⅱ.4.1 Spec Z

Ⅱ.4.2 Spec of the Ring of Integers in a Number Field

Ⅱ.4.3 Affine Spaces over Spec Z

Ⅱ.4.4 A Conic over Spec Z

Ⅱ.4.5 Double Points in Al

Ⅲ Projective Schemes

 Ⅲ.1 Attributes of Morphisms

Ⅲ.1.1 Finiteness Conditions

Ⅲ.1.2 Properness and Separation

 Ⅲ.2 Proj of a Graded Ring

Ⅲ.2.1 The Construction of Proj S

Ⅲ.2.2 Closed Subschemes of Proj R

Ⅲ.2.3 Global Proj

Proj of a Sheaf of Graded 0x-Algebras

The Projectivization P(ε) of a Coherent Sheaf ε

Ⅲ.2.4 Tangent Spaces and Tangent Cones

Affine and Projective Tangent Spaces

Tangent Cones

Ⅲ.2.5 Morphisms to Projective Space

Ⅲ.2.6 Graded Modules and Sheaves

Ⅲ.2.7 Grassmannians

Ⅲ.2.8 Universal Hypersurfaces

 Ⅲ.3 Invariants of Projective Schemes

Ⅲ.3.1 Hilbert Functions and Hilbert Polynomials

Ⅲ.3.2 Flatness Il: Families of Projective Schemes

Ⅲ.3.3 Free Resolutions

Ⅲ.3.4 Examples

Points in the Plane

Examples: Double Lines in General and in p3

Ⅲ.3.5 BEzout's Theorem

Multiplicity of Intersections

Ⅲ.3.6 Hilbert Series

Ⅳ Classical Constructions

 Ⅳ.1 Flexes of Plane Curves

Ⅳ.I.1 Definitions

Ⅳ.1.2 Flexes on Singular Curves

Ⅳ.1.3 Curves with Multiple Components

 Ⅳ.2 Blow-ups

Ⅳ.2.1 Definitions and Constructions

An Example: Blowing up the Plane

Definition of Blow-ups in General

The Blowup as Proj

Blow-ups along Regular Subschemes

Ⅳ.2.2 Some Classic Blow-Ups

Ⅳ.2.3 Blow-ups along Nonreduced Schemes

Blowing Up a Double Point

Blowing Up Multiple Points

The j-Fhnction

Ⅳ.2.4 Blow-ups of Arithmetic Schemes

Ⅳ.2.5 Project: Quadric and Cubic Surfaces as Blow-ups

 Ⅳ.3 Fano schemes

Ⅳ.3.1 Definitions

Ⅳ.3.2 Lines on Quadrics

Lines on a Smooth Quadric over an Algebraically

Closed Field

Lines on a Quadric Cone

A Quadric Degenerating to Two Planes

More Examples

Ⅳ.3.3 Lines on Cubic Surfaces

 Ⅳ.4 Forms

Ⅴ Local Constructions

 Ⅴ.1 Images

Ⅴ.1.1 The Image of a Morphism of Schemes

Ⅴ.1.2 Universal Formulas

Ⅴ.1.3 Fitting Ideals and Fitting Images

Fitting Ideals

Fitting Images

 Ⅴ.2 Resultants

Ⅴ.2.1 Definition of the Resultant

Ⅴ.2.2 Sylvester's Determinant

 Ⅴ.3 Singular Schemes and Discriminants

Ⅴ.3.1 Definitions

Ⅴ.3.2 Discriminants

Ⅴ.3.3 Examples

 Ⅴ.4 Dual Curves

Ⅴ.4.1 Definitions

Ⅴ.4.2 Duals of Singular Curves

Ⅴ.4.3 Curves with Multiple Components

 Ⅴ.5 Double Point Loci

Ⅵ Schemes and Functors

 Ⅵ.1 The Functor of Points

Ⅵ.I.1 Open and Closed Subfunetors

Ⅵ.1.2 K-Rational Points

Ⅵ.1.3 Tangent Spaces to a Functor

Ⅵ.1.4 Group Schemes

 Ⅵ.2 Characterization of a Space by its Functor of Points

Ⅵ.2.1 Characterization of Schemes among Functors

Ⅵ.2.2 Parameter Spaces

The Hilbert Scheme

Examples of Hilbert Schemes

Variations on the Hilbert Scheme Construction

Ⅵ.2.3 Tangent Spaces to Schemes in Terms of Their Functors of Points

Tangent Spaces to Hilbert Schemes

Tangent Spaces to Fano Schemes

Ⅵ.2.4 Moduli Spaces

References

Index

标签
缩略图
书名 概型的几何
副书名
原作名
作者 (美)艾森邦德
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510004742
开本 24开
页数 294
版次 1
装订 平装
字数
出版时间 2010-01-01
首版时间 2010-01-01
印刷时间 2010-01-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.382
CIP核字
中图分类号 O18
丛书名
印张 13
印次 1
出版地 北京
224
150
14
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/13 3:54:16