首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 经典分析中的傅立叶积分
内容
编辑推荐

Except for minor modifications, this monograph represents the lecture notes of a course I gave at UCLA during the winter and spring quarters of 1991. My purpose in the course was to present the necessary background material and to show how ideas from the theory of Fourier integral operators can be useful for studying basic topics in classical analysis, such as oscillatory integrals and maximal functions. The link between the theory of Fourier integral operators and classical analysis is of course not new, since one of the early goals of microlocal analysis was to provide variable coefficient versions of the Fourier transform. However, the primary goal of this subject was to develop tools for the study of partial differential equations and, to some extent, only recently have many classical analysts realized its utility in their subject.

本书为英文版。

目录

Preface

0. Background

 0.1. Fourier Transform

 0.2. Basic Real Variable Theory

 0.3. Fractional Integration and Sobolev Embedding Theorems

 0.4. Wave Front Sets and the Cotangent Bundle

 0.5. Oscillatory Integrals

 Notes

1. Stationary Phase

 1.1. Stationary Phase Estimates

 1.2. Fourier Transform of Surface-carried Measures

 Notes

2. Non-homogeneous Oscillatory Integral Operators

 2.1. Non-degenerate Oscillatory Integral Operators

 2.2. Oscillatory Integral Operators Related to the Restriction Theorem

 2.3. Riesz Means in R

 2.4. Kakeya Maximal Functions and Maximal Riesz Means in R2 Notes

3. Pseudo-differential Operators

 3.1. Some Basics

 3.2. Equivalence of Phase Functions

 3.3. Self-adjoint Elliptic Pseudo-differential Operators on Compact Manifolds Notes

4. The Half-wave Operator and Functions of Pseudo-differential Operators

 4.1. The Half-wave Operator

 4.2. The Sharp Weyl Formula

 4.3. Smooth Functions of Pseudo-differential Operators Notes

5. LP Estimates of Eigenfunctions

 5.1. The Discrete L2 Restriction Theorem

 5.2. Estimates for Riesz Means

 5.3. More General Multiplier Theorems Notes

6. Fourier Integral Operators

 6.1. Lagrangian Distributions

 6.2. Regularity Properties

 6.3. Spherical Maximal Theorems: Take 1

 Notes

7. Local Smoothing of Fourier Integral Operators

 7.1. Local Smoothing in Two Dimensions and Variable Coefficient Kakeya Maximal Theorems

 7.2. Local Smoothing in Higher Dimensions

 7.3. Spherical Maximal Theorems Revisited

 Notes

Appendix: Lagrangian Subspaces of T*IRn

Bibliography

Index

Index of Notation

标签
缩略图
书名 经典分析中的傅立叶积分
副书名
原作名
作者 C.D.Sogge
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787506259187
开本 24开
页数 236
版次 1
装订 平装
字数
出版时间 2003-04-01
首版时间 2003-04-01
印刷时间 2003-04-01
正文语种
读者对象 研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.298
CIP核字
中图分类号
丛书名
印张 10.5
印次 1
出版地 北京
222
148
11
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2002-4923
版权提供者 Cambridge University Press
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/16 16:42:44