首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 应用数值线性代数(国际著名数学图书影印版)
内容
编辑推荐

《Applied Numerical Linear Algebra》(James Demmel) covers both direct and iterative methods for the solution of linear systems, least squares problems, eigenproblems, and the singular value decomposition. Earlier versions have been used by the author in graduate classes in the Mathematics Department of the University of California at Berkeley since 1990 and at the Courant Institute before then.

内容推荐

Designed for use by first-year graduate students from a variety of engineering and scientific disciplines, 《Applied Numerical Linear Algebra》comprehensive textbook covers the solution of linear systems, least squares problems, eigenvalue problems,and the singular value decomposition. The author James Demmel, who helped design the widely used LAPACK and ScaLAPACK linear algebra libraries, draws on this experience to present state-of-the-art techniques for these problems, 《Applied Numerical Linear Algebra》including recommendations of which algorithms to use in a variety of practical situations.

目录

Preface

1 Introduction

1.1 Basic Notation

1.2 Standard Problems of Numerical Linear Algebra

1.3 General Techniques

1.3.1 Matrix Factorizations

1.3.2 Perturbation Theory and Condition Numbers

1.3.3 Effects of Roundoff Error on Algorithms

1.3.4 Analyzing the Speed of Algorithms

1.3.5 Engineering Numerical Software

1.4 Example: Polynomial Evaluation

1.5 Floating Point Arithmetic

1.5.1 Further Details

1.6 Polynomial Evaluation Revisited

1.7 Vector and Matrix Norms

1.8 References and Other Topics for Chapter 1

1.9 Questions for Chapter 1

2 Linear Equation Solving

2.1 Introduction

2.2 Perturbation Theory

2.2.1 Relative Perturbation Theory

2.3 Gaussian Elimination

2.4 Error Analysis

2.4.1 The Need for Pivoting

2.4.2 Formal Error Analysis of Gaussian Elimination

2.4.3 Estimating Condition Numbers

2.4.4 Practical Error Bounds

2.5 Improving the Accuracy of a Solution

2.5.1 Single Precision Iterative Refinement

2.5.2 Equilibration

2.6 Blocking Algorithms for Higher Performance

2.6.1 Basic Linear Algebra Subroutines (BLAS)

2.6.2 How to Optimize Matrix Multiplication

2.6.3 Reorganizing Gaussian Elimination to Use Level 3 BLAS

2.6.4 More About Parallelism and Other Performance Issues

2.7 Special Linear Systems

2.7.1 Real Symmetric Positive Definite Matrices

2.7.2 Symmetric Indefinite Matrices

2.7.3 Band Matrices

2.7.4 General Sparse Matrices

2.7.5 Dense Matrices Depending on Fewer Than O(n2) Pa- rameters

2.8 References and Other Topics for Chapter 2

2.9 Questions for Chapter 2

3 Linear Least Squares Problems

3.1 Introduction

3.2 Matrix Factorizations That Solve the Linear Least Squares Problem

3.2.1 Normal Equations

3.2.2 QR Decomposition

3.2.3 Singular Value Decomposition

3.3 Perturbation Theory for the Least Squares Problem

3.4 Orthogonal Matrices

3.4.1 Householder Transformations

3.4.2 Givens Rotations

3.4.3 Roundoff Error Analysis for Orthogonal Matrices

3.4.4 Why Orthogonal Matrices?

3.5 Rank-Deficient Least Squares Problems

3.5.1 Solving Rank-Deficient Least Squares Problems Using the SVD

3.5.2 Solving Rank-Deficient Least Squares Problems Using QR with Pivoting

3.6 Performance Comparison of Methods for Solving Least Squares Problems

3.7 References and Other Topics for Chapter 3

3.8 Questions for Chapter 3

4 Nonsymmetric Eigenvalue Problems

4.1 Introduction

4.2 Canonical Forms

4.2.1 Computing Eigenvectors from the Schur Form

4.3 Perturbation Theory

4.4 Algorithms for the Nonsymmetric Eigenproblem

4.4.1 Power Method

4.4.2 Inverse Iteration

4.4.3 . Orthogonal Iteration

4.4.4 QR Iteration

4.4.5 Making QR Iteration Practical

4.4.6 Hessenberg Reduction

4.4.7 TridiagonM and Bidiagonal Reduction

4.4.8 QR Iteration with Implicit Shifts

4.5 Other Nonsymmetric Eigenvalue Problems

4.5.1 Regular Matrix Pencils and Weierstrass Canonical Form

4.5.2 Singular Matrix Pencils and the Kronecker Canonical Form

4.5.3 Nonlinear Eigenvalue Problems

4.6 Summary

4.7 References and Other Topics for Chapter 4

4.8 Questions for Chapter 4

5 The Symmetric Eigenproblem and Singular Value Decomposition

5.1 Introduction

5.2 Perturbation Theory

5.2.1 Relative Perturbation Theory

5.3 Algorithms for the Symmetric Eigenproblem

5.3.1 Tridiagonal QR Iteration

5.3.2 Rayleigh Quotient Iteration

5.3.3 Divide-and-Conquer

5.3.4 Bisection and Inverse Iteration

5.3.5 Jacobi's Method

5.3.6 Performance Comparison

5.4 Algorithms for the Singular Value Decomposition

5.4.1 QR Iteration and Its Variations for the Bidiagonal SVD

5.4.2 Computing the Bidiagonal SVD to High Relative Accuracy

5.4.3 Jacobi's Method for the SVD

5.5 Differential Equations and Eigenvalue Problems

5.5.1 The Toda Lattice

5.5.2 The Connection to Partial Differential Equations

5.6 References and Other Topics for Chapter 5

5.7 Questions for Chapter 5

6 Iterative Methods for Linear Systems

6.1 Introduction

6.2 On-line Help for Iterative Methods

6.3 Poisson's Equation

6.3.1 Poisson's Equation in One Dimension

6.3.2 Poisson's Equation in Two Dimensions

6.3.3 Expressing Poisson's Equation with Kronecker Products

6.4 Summary of Methods for Solving Poisson's Equation

6.5 Basic Iterative Methods

6.5.1 Jacobi's Method

6.5.2 Gauss-Seidel Method

6.5.3 Successive Overrelaxation

6.5.4 Convergence of Jacobi's, Gauss-Seidel, and SOR Methods on the Model Problem

6.5.5 Detailed Convergence Criteria for Jacobi's, Gauss-Seidel, and SOR(w) Methods

6.5.6 Chebyshev Acceleration and Symmetric SOR (SSOR)

6.6 Krylov Subspace Methods

6.6.1 Extracting hfformation about A via Matrix-Vector Mul- tiplication

6.6.2 Solving Ax = b Using the Krylov Subspace

6.6.3 Conjugate Gradient Method

6.6.4 Convergence Analysis of the Conjugate Gradient Method

6.6.5 Preconditioning

6.6.6 Other Krylov Subspace Algorithms for Solving Ax=b.

6.7 Fast Fourier Transform

6.7.1 The Discrete Fourier Transform

6.7.2 Solving the Continuous Model Problem Using Fourier Series

6.7.3 Convolutions

6.7.4 Computing the Fast Fourier Transform

6.8 Block Cyclic Reduction

6.9 Multigrid

6.9.1 Overview of Multigrid on the Two-Dimensional Poisson's Equation

6.9.2 Detailed Description of Multigrid on the One-Dimensiona Poisson's Equation

6.10 Domain Decomposition

6.10.1 Nonoverlapping Methods

6.10.2 Overlapping Methods

6.11 References and Other Topics for Chapter 6

6.12 Questions for Chapter 6

7 Iterative Methods for Eigenvalue Problems

7.1 Introduction

7.2 The Rayleigh-Ritz Method

7.3 The Lanczos Algorithm in Exact Arithmetic

7.4 The Lanczos Algorithm in Floating Point Arithmetic

7.5 The Lanczos Algorithm with Selective Orthogonalization

7.6 Beyond Selective Orthogonalization

7.7 Iterative Algorithms for the Nonsymmetric Eigenproblem

7.8 References and Other Topics for Chapter 7

7.9 Questions for Chapter 7

Bibliography

Index

标签
缩略图
书名 应用数值线性代数(国际著名数学图书影印版)
副书名
原作名
作者 (美)戴梅尔
译者
编者
绘者
出版社 清华大学出版社
商品编码(ISBN) 9787302245001
开本 16开
页数 419
版次 1
装订 平装
字数
出版时间 2011-02-01
首版时间 2011-02-01
印刷时间 2011-02-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.582
CIP核字
中图分类号 O241.6
丛书名
印张 27.25
印次 1
出版地 北京
246
176
17
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01—2008—0793
版权提供者 ISIAM
定价
印数 3000
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/10 20:36:46