本书是海外优秀数学类教材系列丛书之一,是高等教育出版社从汤姆森学习出版集团原版引进,具有相当高的学术水平,适合高校使用.
图书 | 离散数学及其应用(第3版影印版)/海外优秀数学类教材系列丛书 |
内容 | 编辑推荐 本书是海外优秀数学类教材系列丛书之一,是高等教育出版社从汤姆森学习出版集团原版引进,具有相当高的学术水平,适合高校使用. 目录 Chapter 1 The Logic of Compound Statements 1 1.1 LogicalForm and LogicalEquivalence 1
Statements;CompoundStatements;TruthValues;EvaluatingtheTruthofMo re General Compound Statements;Logical Equivalence;Tautologies and Contradictions;Summary ofLogical Equivalences 1.2 Conditional Statements 17 Logical Equivalences Involving→:Representation ofIf-Then As Or;The Negadon of a Conditional Statement;The Contrapositive of a Conditional Statement;The Converse and Inverse of a Conditional Statement;Only If and the Biconditional;Necessary and Sufficient Conditions;Remarks l. 3 Valid andInvalid Arguments 29 Modus Ponens and Modus Tollens;Additional Valid Argument Forms:Rules of Inference;Fallacies;Contradictions and Valid Arguments;Summary of Rules of Inference 1.4Application:Digital Logic Circuits 43 Black Boxesand Gates;The Input/Output for a Circuit;The Boolean Expression Cor- responding to a Circuit;The Circuit Corresponding to a Boolean Expression;Finding a CircuitThatCorresponds to a GivenInput/OutputTable;Simplifying Combinational Circuits;NAND and NOR Gares 1.5 Application:Number Systems and Circuits for Addition 57 Binary Representation of Numbers;Binary Addition and Subtraction;Circuits for Computer Addition;Two"s Complements and the Computer Representation of Neg- ativeIntegers;8-Bit Representation of a Number;ComputerAddition with Negative Integers;Hexadecimal Notation Chapter 2 The Logic of Quantified Statements 75 2.1 Introduction to Predicates and Quantified Statements / 75 The Universal Quantifier:V:The Existential Quantifier:ョ :Formal Versus Informal Language;Universal Conditional Statements;Equivalent Forms ofthe Universal and Existential Statements;Implicit Quantification;Tarski"s World 2.2 Introduction to Predicates and Quantified Statements II 88 Negations of Quantified Statements;Negations of Universal Conditional Statements;The Relation among V,ョ,∧,and V;Vacuous Truth of Universal Statements;Variants 0f Universal Conditional Statements;Necessal-y and Sufficient Conditions,Only If 2.3 Statements Containing Multiple Quantifiers 97 Translating from Informal to Formal Language;Ambiguous Language;Negations of Multiply.Quantified Statements;Older of Quantifiers;Formal Logical Notation;Prolog 2. 4 Arguments with Quantified Statements 111 Universal MOdus Ponens;Use of Universal Modus Ponens in a Proof;Universal Modus Tollens;proving Validity of Arguments with Quantified Statements;Using Diagramsto Test for Validity;Creating Additional Forms of Argument;Remark on the Converse and Inverse Errors Chapter 3 Elementary Number Theoryand Methods ofProof 125 3.1 Direct Proofand Counterexample h Introduction 126 Definitions;Provlag Existential Statements;Disproving Universal Statements by Counterexample;Proving Universal Statements;Directions for Writing Proofs of Universal Statements;Common Mistakes;Getting Proofs Started;Showing That an Existential Statement Is False;Conjecture,Proof,and Disproof 3.2 Direct Proofand Counterexample II Rational Numbers 141 More on Generalizing from the Generic Particular;Proving Properties of Rational Numbers;Deriving New Mathematics from Old 3.3 Direct Proof and Counterexample IIh Divisibility 148 Pmving Properties of Divisibility;Counterexamples and Divisibility;The Unique Factorization Theorem 3.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem 156 Discussion of the Quorient.Remainder Theorem and Examples ;d/v and mod;Alter- native Representations of Integers and Applications to Number Theory 3.5 Direct Proofand Counterexample V:Floorand Ceiling 164 Definition and Basic Properties;The Floor of n/2 3.6 Indirect Argument:Contradiction and Contraposition 171 Proof by Contradiction;Argument by Contraposition;Relation between Proof by ContradictionandProofbyContraposition;Proofas aProblem-SolvingTool 3.7 Two Classica|Theorems 179 TheI~ationality of√2:TheInfinitade ofthe set ofPrimeNumbers;~VhcutoUse IndirectProof;OpenQuestionsinNumberTheory 3.8 Application:Algorithms 186 An Algorithmic Language;A Notation for Algorithms;Trace Tables;The Division Algorithm;The Eudidean Algorithm Chapter 4 Sequences and MathematicalInduction 199 4.1 Sequences 199 Explicit Formulas for Sequences;Summation Notation;Product Notation;Factorial Notation;Properties ofSummations and Products;Change of Variable;Sequences in Computer Programming;Application:Algorithm to Convert from Base 10 to Base 2 Using Repeated Division by 2 4.2 Mathematical Induction, 215 Principie of MathematicalInduction;SumoftheFi~tnIntegers; Sum of a Geometric Sequence 4.3 Mathematical Induction II 227
ComparisonofMathematicalInductionandInductiveReasoning;Proving Divisibility Properties;Proving Inequalities 4.4 Strong Mathematical Inductiopand the Well-Ordering Principle 235 The Principle of Strong Mathematical Induction;Binary Representation of Integers; The Well-Ordering Principle for the Integers 4.5 Application:Correctness ofAlgorithms 244 Assertions;Loop lnvariants;Correctness of the Division Algorithm;Correctness of the Euclidean Algorithm Chapter 5 Set Theory 255 5.1 Basic Definitions of Set Theory 255 Subsets;Set Equality;Operations on Sets;Venn Diagrams;The Empty Set;Partitions of Sets;Power Sets;Cartesian Products;An Algorithm to Check Whether One Set Is a Subset ofAnother(Optional) 5.2 Properties of Sets 269 Set Identities;Proving Set Identities;Proving That a Set Is the Empty Set 5.3 Disproofs,AlgebraicProofs.andBooleanAlgebras 282 DisprovinganAllegedSetProperty;Problem-Solving Strategy; TheNumberofSub- sets of a Set;"Algebraic"Proofs of Set Identities;Boolean Algebras 5.4 Russell~Paradox and the Halting Problem 293 Description of Russell"s Paradox;The Halting Problem Chapter 6 Countingand Probability 297 6,1 Introduction 298 Definition ofSample Space and Event;Probability in the Equally Likely Case;Count -ing the Elements of Lists,Sublists,and One-Dimensional Arrays 6.2 Possibility Trees and the Multiplication Rule 306 Possibility Trees;The Multiplication Role;When the Multiplication Rule ls Difficult or Impossible to Apply;Permutations;Permut~ions of Selected Elements 6.3 Counting Elements of Disjoint Sets:The Addition Rule 321 The Addition Rule;The Difference Rule;The Inclusion/Exclusion Rule 6.4 Counting Subsets of a Set:Combinations 334 r-Combinations;Ordered and Unordered Selections;Relation between Permutations
andCombinations;PermutationofaSetwithRepeatedElements;SomeAdvice about Counting 6.5 r-Combinations with Repetition AIIowed 349 Multisets and How to Count Them;Which Formula to Use? 6.6 The Algebra of Combinations 356 Combinatorial Formulas;Pascal"s Triangle;Algebmic and Combinatorial Proofs of Pascal"s Formula 6. 7 The Binomia|Theofem 362 Statement of the Theorem;Algebraic and Combinatorial Proof;Applications 6.8 Probability Axioms and Expected Value 370 Probability Axioms;Deriving Additional Probability Formulas;Expected Value 6.9 Conditional Probability,Bayes"Formula,and Independent Even亡s 375 Conditional Probability;Bayes"Theorem;Independent Events Chapter 7 Functions 389 7.1 Functions Defined on General Sets 389
DefinitionofFunction;ArrowDiagrams;FunctionMachines;ExamplesofFu nctions; Boolean Functions;Checking Whether a Function Is Well Defined 7.2 One-to-One and Onto,Inverse Functions 402 One-to-One Functions;One-to-One Functions on Infinite Sets ;Application:Hash
Functions;OntoFunctions;OntoFunctionsonInfiniteSets;PropertiesOf Exponential and Logarithmic Functions;One-to-One Correspondences;Inverse Function。 7.3 Application:The Pigeonhole Principle 420 Statement and Discussion of the Principle;Applications;Decimal Expansions 0f Fractions;Generalized Pigeonhole Principle;Proof of the Pigeonhole Principle 7.4 Composition of Functions 431 Definition and Examples;Composition of One.to.One Functions:Composition 0f Onto Functions 7.5 Cardinality with Applications to Computability 443 DefinitionofCardinalEquivalence;CountableSets;The Search for Larger Infinities: The Cantor Diagonalization Process;Application:Cardinality and Computabilitv Chapter 8 Recursion 457 8.1 Recursively Defined Sequences 457 Definition of Recurrence Relation;ExamplesofRecursivelyDefinedSeauences:The NumberofPartitions ofaSetInto r Subsets 8.2 Solving Recurrence Relations by Iteration 475 The MethodofIteration;UsingFormulastoSimplifySolutionsObtainedbyIterat ion; Checking the Correctness ofa Formula by Mathematical Induction;Discovering That an Explicit Formula Is Incorrect 8.3 Second-Order Linear Homogenous Recurrence Relations with Constant Coefficients 487 Derivation of Technique for Solving These Relations;The Distinct.RoOts Case:The Single-Root Case 8.4 General Recursive Definitions 499 Recursively Defined Sets;Proving Properties about Recursively Defined Sets:Re. cursive Definitions of Sum,Product,Union,and Intersection;Recursive Functions Chapter 9 The EfficiencyofAlgorithms 510 9. 1 Real-Valued Functions ofa Real Variable and Their Graphs 510 Graph ofa Function;Power Functions;The Floor Function;Graphing Functions De-
finedonSetsofIntegers;GraphofaMultipleofaFunction;IncreasingandDe creasins 9.2 Ο.Ω.and ΘNotationS 518 Definition and General Properties of 0一.Ω一.and@-Notations;Orders of Power
Functions;OrdersofPolynomialFunctions;OrdersofFunctionsofIntegerV ariables; Extension to Functions Composed of Rational Power Functions 9.3 Application:Efficiency ofAlgorithms/ 531 Time Efficiency of an Algorithm;Computing"Orders of Simple Algorithms;The Sequential Search Algorithm;The Insertion Sort Algorithm 9.4 Exponential and Logarithmic Functions:Graphs andOrders 543 Graphs of Exponential and Logarithmic Functions;Application:Number of Bits Needed to Represent an Integer in Binary Notation;Application:Using Logarithms to Solve Recurrence Relations;Exponential and Logarithmic Orders 9.5 Application:Efficiency ofAlgorithms II 557 Divide-and··Conquer Algorithms;The Efficiency of the Binary Search Algorithm; Merge Sort;Tractable and Intractable Problems;A Final Remark on Algorithm Effi-ciency Chapter 10 Relations 571 10.1 Relations on Sets 571 Definition of Binary Relation;An_0w Diagram of a Relation ;Relations and Func- tions;The Inverse of a Relation;Directed Graph of a Relation;N-ary Relations and Relational Databases 10.2 Reflexivity,Symmetry,and Transitivity 584
Reflexive,Symmetric,andTransitiveProperties;TheTransitiveClosure ofaRelation; Properties of Relations on Infinite Sets 10.3 Equivalence Relations 594 The Relation Induced by a Partition;Definition of an Equivalence Relation;Equiva-lence Classes of an Equivalence Relation 10.4 Modular Arithmetic with Applications to Cryptography 611 Properties of Congruence Modulo n;Modular Arithmetic;Finding an Inverse Modulo -n:Euclid"S Lemma;Fermat"S Little Theorem and the Chinese Remainder Theorem;Why Does the RSA Cipher Work? 10.5 Partia|Order Relations 632 Antisymmetry;Partial Order Relations;Lexicographic Order ;Hasse Diagrams;Par- tially andTotallyOrderedSets;TopologicalSorting;AnApplication;PERTandCP M Chapter 11 Graphs and Trees 649 11.1 Graphs:An Introduction 649 Basic Terminology and Examples;Special Graphs;The Concept of Degree 1 1.3 Matrix Representations of Graphs 683
Matnces;MatricesandDirectedGraphs;Matricesand(Undirected)Graphs: Matrices and Connected Components;MaRx Multiplication;Counting walks of Length N 11.4 Isomorphism of Graphs 697 Definition of Graph Isomorphism and Examples;Isomorphic Invariants:Graph Is0一 lnorphism for Simple Graph Definition and Examples ofTrees ;Characterizing Trees:Rooted Trees;Binary Trees 11. 6 Spanning Trees 723 Definition of a Spanni g Tree;Minimum Spanning Trees;Kruskal,s A1gorithm:P rim"s Algorithm Chapter 12 RegularExpressionsandFinite.StateAutomata 734 12.1 Forma|Languages and Regular Expressions 735 Definitions and Exafnples 0f Formal Languages and Regular Expressions:Practical Uses of Regular Expressions Defin-ition 0f a Finite-State Automaton;The Language Accepted by an Automaton:The Eventual-State Function;Designing a Finite-State Automaton;Simulating a Finite-State Automaton Using Software;Finite-State Automata and Regular Expres.Sions;Regular Languages 12.3 Simplifying Finite-State Automata 763 *-EquivalenceofStates;k一EquivalenceofStates;Finding the*EquivalenceClasses: The Quotient Automaton;Constmcting the Quotient Automa--tonn-;Equivalent Au-" AppendixA Properties ofthe Real Numbers A-1 Appendix B Solutions and Hints to Selected Exercises A-4 |
标签 | |
缩略图 | ![]() |
书名 | 离散数学及其应用(第3版影印版)/海外优秀数学类教材系列丛书 |
副书名 | |
原作名 | |
作者 | (美国)苏杉娜 |
译者 | |
编者 | |
绘者 | |
出版社 | 高等教育出版社 |
商品编码(ISBN) | 9787040162301 |
开本 | 16开 |
页数 | 904 |
版次 | 1 |
装订 | 平装 |
字数 | 500 |
出版时间 | 2005-03-01 |
首版时间 | 2005-03-01 |
印刷时间 | 2005-03-01 |
正文语种 | 英 |
读者对象 | 普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 1.408 |
CIP核字 | |
中图分类号 | O158 |
丛书名 | |
印张 | 58.25 |
印次 | 1 |
出版地 | 北京 |
长 | |
宽 | |
高 | 33 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | |
是否套装 | 单册 |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。