首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 生长曲线模型及其统计诊断(精)
内容
编辑推荐

This book discusses the theory of a growth curve model (GCM) with particular emphasis on statistical diagnostics, which is mainly based on recent work on diagnostics made by the authors and their collaborators. This book is intended for researchers who are working in the area of theoretical studies related to the GCM as well as multivariate statistical diagnostics, and for applied statisticians working in application of the GCM to practical areas.

目录

Preface

Acronyms

Notation

Chapter 1

Introduction

1.1 General Remarks

 1.1.1 Statistical Diagnostics

 1.1.2 Outliers and Influential Observation

1.2 Statistical Diagnostics in Multivariate Analysis

 1.2.1 Multiple Outliers in Multivariate Data

 1.2.2 Statistical diagnostics in multivariate models

1.3 Growth Curve Model (GCM)

 1.3.1 A Brief Review

 1.3.2 Covariance Structure Selection

1.4 Summary

 1.4.1 Statistical Inference

 1.4.2 Diagnostics Within a Iikelihood Framework

 1.4.3 Diagnostics Within a Bayesian Framework

1.5 Preliminary Results

 1.5.1 Matrix Operation and Matrix Derivative

 1.5.2 Matrix-variate Normal and t Distributions

1.6 Further Readings

Chapter 2

Generalized Least Square Estimation

2.1 General Remarks

 2.1.1 Model Definition

 2.1.2 Practical Examples

2.2 Generalized Least Square Estimation

2.2.1 Generalized Least Square Estimate (GLSE)

2.2.2 Best Linear Unbiased Estimate (BLUE)

2.2.3 Illustrative Examples

2.3 Admissible Estimate of Regression Coefficient

2.3.1 Admissibility

2.3.2 Necessary and Sufficient Condition

2.4 Bibliographical Notes

Chapter 3

Maximum Likelihood Estimation

3.1 Maximum Likelihood Estimation

3.1.1 Maximum Likelihood Estimate (MLE)

3.1.2 Expectation and Variance-covariance

3.1.3 Illustrative Examples

3.2 Rao's Simple Covariance Structure (SCS)

 3.2.1 Condition That the MLE Is Identical to the GLSE

 3.2.2 Estimates of Dispersion Components

 3.2.3 Illustrative Examples

3.3 Restricted Maximum Likelihood Estimation

 3.3.1 Restricted Maximum Likelihood (REMLs) estimate

 3.3.2 REMLs Estimates in the GCM

 3.3.3 Illustrative Examples

3.4 Bibliographical Notes

Chapter 4

Discordant Outlier and Influential Observation

4.1 General Remarks

 4.1.1 Discordant Outlier-Generating Model

 4.1.2 Influential Observation

4.2 Discordant Outlier Detection in the GCM with SCS

 4.2.1 Multiple Individual Deletion Model (MIDM)

 4.2.2 Mean Shift Regression Model (MSRM)

 4.2.3 Multiple Discordant Outlier Detection

 4.2.4 Illustrative Examples

4.3 Influential Observation in the GCM with SCS

 4.3.1 Generalized Cook-type Distance

 4.3.2 Confidence Ellipsoid's Volume

 4.3.3 Influence Assessment on Linear Combination

 4.3.4 Illustrative Examples

4.4 Discordant Outlier Detection in the GCM with UC

 4.4.1 "Multiple Individual Deletion Model (MIDM)

 4.4.2 Mean Shift Regression Model (MSRM)

 4.4.3 Multiple Discordant Outlier Detection

 4.4.4 Illustrative Examples

4.5 Influential Observation in the GCM with UC

4.5.1 Generalized Cook-type Distance

4.5.2 Confidence Ellipsoid's Volume

4.5.3 Influence Assessment on Linear Combination

4.5.4 Illustrative Examples

4.6 Bibliographical Notes

Chapter 5

Likelihood-Based Local Influence

5.1 General Remarks

 5.1.1 Background

 5.1.2 Local Influence Analysis

5.2 Local Influence Assessment in the GCM with SCS

 5.2.1 Observed Information Matrix

 5.2.2 Hessian Matrix

 5.2.3 Covariance-Weighted Perturbation

 5.2.4 Illustrative Examples

5.3 Local Influence Assessment in the GCM with UC

 5.3.1 Observed Information Matrix

 5.3.2 Hessian Matrix

 5.3.3 Covariance-Weighted Perturbation

 5.3.4 Illustrative Examples

5.4 Bibliographical Notes

Chapter 6

Bayesian Influence Assessment

6.1 General Remarks

 6.1.1 Bayesian Influence Analysis

 6.1.2 Kullback-Leibler Divergence

6.2 Bayesian Influence Analysis in the GCM with SCS

 6.2.1 Posterior Distribution

 6.2.2 Bayesian Influence Measurement

 6.2.3 Illustrative Examples

6.3 Bayesian Influence Analysis in the GCM with UC

 6.3.1 Posterior Distribution

 6.3.2 Bayesian Influence Measurement

 6.3.3 Illustrative Examples

6.4 Bibliographical Notes

Chapter 7

Bayesian Local Influence

7.1 General Remarks

 7.1.1 Bayesian Local Influence

 7.1.2 Bayesian Hessian Matrix

7.2 Bayesian Local Influence in the GCM with SCS

 7.2.1 Bayesian Hessian Matrix

 7.2.2 Covariance-Weighted Perturbation

 7.2.3 Illustrative Examples

7.3 Bayesian Local Influence in the GCM with UC

 7.3.1 Bayesian Hessian Matrix

 7.3.2 Covariance-Weighted Perturbation

 7.3.3 Illustrative Examples

7.4 Bibliographical Notes

Appendix

Data sets used in this book

References

Author Index

Subject Index

标签
缩略图
书名 生长曲线模型及其统计诊断(精)
副书名
原作名
作者 Jiashan Liu//Deping Yan//Yang Zhang
译者
编者
绘者
出版社 科学出版社
商品编码(ISBN) 9787030195326
开本 16开
页数 387
版次 1
装订 精装
字数
出版时间 2007-01-01
首版时间 2007-01-01
印刷时间 2007-01-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.752
CIP核字
中图分类号
丛书名
印张 24.1875
印次 1
出版地 北京
247
174
22
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/18 20:00:06