首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 群论和物理学
内容
编辑推荐

Group theory is one of the great achievements of 19th century mathematics. It emerged as a unifying idea drawing on four different sources: number theory, the theory of equations, geometry, and crystallography. The early motivation from number theory stemmed from the work of Euler, Legendre and Gauss on power residues. In the theory of equations, the study of various permutation groups became increasingly important through the work of Lagrange, Ruffini, Gauss, Abel, Cauchy, and especially Galois. The discovery of new types of geometries-including non-Euclidean, affine, projective etc.-led, eventually, to the famous Erlangen program of Klein, which proposed that the true study of any geometry lies in an analysis of its group of motions. In crystallography, the possible symmetries of the internal structure of a crystal were enumerated long before there was any possibility of its physical determination (by X-ray analysis).

本书为英文版。

目录

Preface

1 Basic definitions and examples

 1.1 Groups: definition and examples

 1.2 Homomorphisms: the relation between SL 2, and the Lorentz group

 1.3 The action of a group on a set

 1.4 Conjugation and conjugacy classes

 1.5 Applications to crystallography

 1.6 The topology of SU 2 and SO 3

 1.7 Morphisms

 1.8 The classification of the finite subgroups of SO 3

 1.9 The classification of the finite subgroups of O 3

 1.10 The icosahedral group and the fullerenes

2 Representation theory of finite groups

 2.1 Definitions, examples, irreducibility

 2.2 Complete reducibility

 2.3 Schur''s lemma

 2.4 Characters and their orthogonality relations

 2.5 Action on function spaces

 2.6 The regular representation

 2.7 Character tables

 2.8 The representations of the symmetric group

3 Molecular vibrations and homogeneous vector bundles

 3.1 Small oscillations and group theory

 3.2 Molecular displacements and vector bundles

 3.3 Induced representations

 3.4 Principal bundles

 3.5 Tensor products

 3.6 Representative operators and quantum mechanical selection rules

 3.7 The semiclassical theory of radiation

 3.8 Semidirect products and their representations

 3.9 Wigner''s classification of the irreducible representations of the Poincare group

 3.10 Parity

 3.11 The Mackey theorems on induced representations, with applications to the symmetric group

 3.12 Exchange forces and induced representations

4 Compact groups and Lie groups

 4.1 Haar measure

 4.2 The Peter-Weyl theorem

 4.3 The irreducible representations of SU 2

 4.4 The irreducible representations of SO 3 and spherical harmonics

 4.5 The hydrogen atom

 4.6 The periodic table

 4.7 The shell model of the nucleus

 4.8 The Clebsch-Gordan coefficients and isospin

 4.9 Relativistic wave equations

 4.10 Lie algebras

 4.11 Representations of su 2

5 The irreducible representations of SU n

 5.1 The representation of Gl V on the r-fold tensor product

 5.2 Gl V spans Hornsr TrV, TrV

 5.3 Decomposition of TrV into irreducibles

 5.4 Computational rules

 5.5 Description of tensors belonging to W

 5.6 Representations of Gl V and Sl V on U

 5.7 Weight vectors

 5.8 Determination of the irreducible finite-dimensional repre-sentations of Sl d, C

 5.9 Strangeness

 5.10 The eight-fold way

 5.11 Quarks

 5.12 Color and beyond

 5.13 Where do we stand

Appendix A The Bravais lattices and the arithmetical crystal classes

 A.1 The lattice basis and the primitive cell

 A.2 The 14 Bravais lattices

  Appendix B Tensor product

  Appendix C Integral geometry and the representations of the symmetric group

 C.1 Partition pairs

 C.2 Proof of the main combinatorial lemma

 C.3 The Littlewood-Richardson rule and Young''s rule

 C.4 The ring of virtual representations of all the Sn

 C.5 Dimension formulas

 C.6 The Murnaghan-Nakayama rule

 C.7 Characters of Gl V

  AppendixD Wigner''s theorem on quantum mechanical symmetries

  Appendix E Compact groups, Haar measure, and the Peter-Weyl theorem

  Appendix F A history of 19th century spectroscopy

  Appendix G Characters and fixed point formulas for Lie groups

Further reading

Index

标签
缩略图
书名 群论和物理学
副书名
原作名
作者 S.Sternberg
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787506249652
开本 24开
页数 429
版次 1
装订 平装
字数
出版时间 2000-04-01
首版时间 2000-04-01
印刷时间 2000-04-01
正文语种
读者对象 研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-物理
图书小类
重量 0.5
CIP核字
中图分类号
丛书名
印张 18.5
印次 1
出版地 北京
222
148
20
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2000-0857
版权提供者 Cambridge University Press
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/12 4:38:58