首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 物理学家和工程师用的现代数学方法
内容
编辑推荐

The purpose of Modern Mathematical Methods for Physicists and Engineers is to help grad-uate and advanced undergraduate students of the physical sciences and engineering acquire a sufficient mathematical background to make intelligent use of modem computational and analytical methods.This book responds to my students'repeated requests for a mathematical methods text with a modem point of view and choice of topics.

目录

Preface

1 FOUNDATIONS OF COMPUTATION

 1.1 Introduction

 1.2 Representations of Numbers

1.2.1 Integers

  1.2.2 Rational Numbers and Real Numbers

  1.2.3 Representations of Numbers as Text

  1.2.4 Exercises for Section 1.2

 1.3 Finite Floating-point Representations

  1.3.1 Simple Cases

  1.3.2 Practical Floating-point Representations

  1.3.3 Approaching Zero or Infinity Gracefully

  1.3.4 Exercises for Section 1.3

 1.4 Floating-point Computation

  1.4.1 Relative Error; Machine Epsilon

  1.4.2 Rounding

  1.4.3 Floating-point Addition and Subtraction

  1.4.4 Exercises for Section 1.4

 1.5 Propagation of Errors

  1.5.1 General Formulas

  1.5.2 Examples of Error Propagation

  1.5.3 Estimates of the Mean and Variance

  1.5.4 Exercises for Section 1.5

 1.6 Bibliography and Endnotes

  1.6.1 Bibliography

  1.6.2 Endnotes

2 SETS AND MAPPINGS

 2.1 Introduction

 2.2 Basic Definitions

  2.2.1 Sets

  2.2.2 Mappings

  2.2.3 Axiom of Choice

  2.2.4 Cartesian Products

  2.2.5 Equivalence and Equivalence Classes

  2.2.6 Exercises for Section 2.2

 2.3 Union, Intersection, and Complement

  2.3.1 Unions of Sets

  2.3.2 Intersections of Sets

  2.3.3 Relative Complement

  2.3.4 De Morgan''s Laws

  2.3.5 Exercises for Section 2.3

 2.4 Infinite Sets

  2.4.1 Basic Properties of Infinite Sets

  2.4.2 Induction and Recursion

  2.4.3 Countable Sets

  2.4.4 Countable Unions and Intersections

  2.4.5 Uncountable Sets

  2.4.6 Exercises for Section 2.4

 2.5 Ordered and Partially Ordered Sets

  2.5.1 Partial Orderings

  2.5.2 Orderings; Upper and Lower Bounds

  2.5.3 Maximal Chains

  2.5.4 Exercises for Section 2.5

 2.6 Bibliography

3 EVALUATION OF FUNCTIONS

 3.1 Introduction

 3.2 Sensitivity and Condition Number

  3.2.1 Definitions

  3.2.2 Evaluation of Polynomials

  3.2.3 Multiple Roots of Polynomials

  3.2.4 Exercises for Section 3.2

 3.3 Recursion and Iteration

  3.3.1 Finding Roots by Bisection

  3.3.2 Newton-Raphson Method

  3.3.3 Evaluation of Series

  3.3.4 Exercises for Section 3.3

 3.4 Introduction to Numerical Integration

  3.4.1 Rectangle Rules

  3.4.2 Trapezoidal Rule

  3.4.3 Local and Global Errors

  3.4.4 Exercises for Section 3.4

 3.5 Solution of Differential Equations

  3.5.1 Euler''s Method

  3.5.2 Truncation Error of Euler's Method

  3.5.3 Stability Analysis of Euler's Method

  3.5.4 Selected Finite-difference Methods

  3.5.5 Exercises for Section 3.5

 3.6 Bibliography

4 GROUPS, RINGS, AND FIELDS

 4.1 Introduction

 4.2 Groups

  4.2.1 Axioms

  4.2.2 Two-element Group

  4.2.3 Orbits and Cosets

  4.2.4 Cyclic Groups

  4.2.5 Dihedral Groups

  4.2.6 Cubic Groups

  4.2.7 Continuous Groups

  4.2.8 Classes of Conjugate Elements

  4.2.9 Exercises for Section 4.2

 4.3 Group Homomorphisms

  4.3.1 Definitions and Basic Properties

  4.3.2 Normal Subgroups

  4.3.3 Direct Product Groups

  4.3.4 Exercises for Section 4.3

 4.4 *Symmetric Groups

  4.4.1 Permutations

  4.4.2 Cayley''s Theorem

  4.4.3 Cyclic Permutations

  4.4.4 Even and Odd Permutations

  4.4.5 Exercises for Section 4.4

 4.5 Rings and Integral Domains

  4.5.1 Axioms and Examples

  4.5.2 Basic Properties of Rings

  4.5.3 Rational Numbers

  4.5.4 *Ring Homomorphisms

  4.5.5 Exercises for Section 4.5

 4.6 Fields

  4.6.1 Axioms and Examples

  4.6.2 *Galois Fields

  4.6.3 Exercises for Section 4.6

 4.7 Bibliography

5 VECTOR SPACES

6 LINEAR MAPPINGS I

7 LINEAR FUNCTIONALS

8 INNER PRODUCTS AND NORMS

9 LINEAR MAPPINGS II

10 CONVERGENCE IN NORMED VECTOR SPACES

11 GROUP REPRESENTATIONS

12 SPECIAL FUNCTIONS

APPENDIX A INDEX OF NOTATION

APPENDIX B AFFINE MAPPINGS

APPENDIX C PSEUDO-UNITARY SPACES

APPENDIX D REMAINDER TERM

APPENDIX E BOLZANO-WEIERSTRAB THEOREM

APPENDIX F WEIERSTRAB APPROXIMATION THEOREM

Index

标签
缩略图
书名 物理学家和工程师用的现代数学方法
副书名
原作名
作者 C.D.Cantrell
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787506266369
开本 24开
页数 763
版次 1
装订 平装
字数
出版时间 2004-11-01
首版时间 2004-11-01
印刷时间 2004-11-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-物理
图书小类
重量 0.904
CIP核字
中图分类号
丛书名
印张 33
印次 1
出版地 北京
223
148
30
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2004-5385
版权提供者 Cambridge University Press
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/13 0:24:35