首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 复分析(第4版)
内容
编辑推荐

The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. The first half, more or less, can be used for a one-semester course addressed to undergraduates. The second half can be used for a second semester, at either level. Somewhat more material has been included than can be covered at leisure in one or two terms, to give opportunities for the instructor to exercise individual taste, and to lead the course in whatever directions strikes the instructor's fancy at the time as well as extra reading material for students on their own. A large number of routine exercises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students.

此书为英文版。

目录

Foreword

Prerequisites

PART ONE

Basle Theory

CHAPTER I

Complex Numbers and Functions

1. Definition

2. Polar Form

3. Complex Valued Functions

4. Limits and Compact Sets Compact Sets

5. Complex Differentiability

6. The Cauchy-Riemann Equations

7. Angles Under Holomorphic Maps

CHAPTER II

Power Series

1. Formal Power Series

2. Convergent Power Series

3. Relations Between Formal and Convergent Series

Sums and Products

Quotients

Composition of Series

4. Analytic Functions

5. Differentiation of Power Series

6. The Invelse and Open Mapping Theorems

7. The Local Maximum Modulus Principle

CHAPTER III

Cauchy's Theorem, First Part

1. Holomorphic Functions on Connected Sets Appendix: Connectedness

2. Integrals Oer Paths

3. Local Primitive for a Holomorphic Function

4. Ancther Description of 1he Integral Along a Path

5. The Homotopy Form of Cauchy's Theorem

6. Existence of Global Primitives. Definition of the Logarithm

7. The Local Cauchy Formula

CHAPTER IV

Winding Numbers and Cauchy's Theorem

1. The Winding Number

2. The Global Catchy Theorem Dixon's PIocf of Theorem 2.5 (Cauchy's Formula)

3. Artin's Proof

CHAPTER V

Applications 1 Cauchy's Integral Formula

1. Uniform Limits of Analytic Functions

2. Lament Series

3. Isolated Singularities

Removable Singularities

Poles

E sential Singularities

CHAPTER Vl

Calculus ot Residues

1. The Residue Formula

Residues of Differentials

2. Evaluation of Definite Integrals

Fourier Transforms

Trigonometric Integrals

Mellin Transforms

CHAPTER VII

Conlormsl Mappings

1. Schwarz Lemma

2. Analytic Automorphisms of the Dic

3. The Upper Half Plane

4. Olher Examples

5. Fractional Linear Transformations

CHAPTER VIII

Harmonic Functions

I. Definition

Application: Perpendicularity

Application: Flow Lines

2. Examples

3. Basic Prol;erties of Harmonic Functions

4. The Poisson Formula

The Poisson Integral as a Convolution

5. Construction of Harmonic Furctions

6. Appendix. Differentiating Under the Int(gral Sign

PART TWO

Geometric Function Theory

CHAPTER IX

Schwarz Reflection

t. Schwarz Reflection (by Complex Conjugation)

,2. Reflection Across Analytic Arcs

3. Application cf Schwatz Reflection

CHAPTER X

The Riemann Mapping Theorem

1. Statement of the Theorem

2. Compact Sets in Function Spces

3. Proof cf the Riemann Mapping Theorem

4. Behavior at the Boundary

CHAPTEA Rnalytic ContinuatiXl on Along Curves

1. Continuation Along a Curve

2. The Dilogarithm 

3. Application lo Picard's Theorem

PART THREE

Various Analytic Topics

CHAPTER XII

Applications of the Maximum Modulus Principle and Jensen's Formula

1. Jensen's Formula

2. The Picard-Borel Theorem

3. Bounds by the Real Part, Borel-Carathrodory Theorem

4. The Use cf Three Circles and the Effect of Small Derivatives Hermite Interpolation Formula

5. Entire Functions with Rational Valves

6. The Phragmen-Lindelrf and Hadamard Theorems

CHAPTER XIII

Entire and Meromorphic Functions

1. Infinite Products

2. Weierstrass Products

3. Functions of Finite Order

4. Meromorphic Functions, Mittag-Leffler Theorem

CHAPTER XIV

Elliptic Functions

1. The Liouville Theorems

2. The Weierstrass Function

3. The Addition Theorem

4. The Sigma and Zeta Functions

CHAPTER XV

The Gamma and Zeta Functions

1. The Differentiation Lemma

2. The Gamma Function

Weierstrass Product

The Gauss Multiplication Formula (Distribution Relation)

The (Other) Gauss Formula

The Mellin Transform

The Starling Formula

Proof of Starling's Formula

3. The Lerch Formula

4. Zeta Functions

CHAPTER XVl

The Prime Number Theorem

1. Basic Analytic Properties of the Zeta Function

2. The Main Lemma and its Application

3. Proof of the Main Lemma

Appenflix

1. Summation by Parts and Non-Absolute Convergence

2. Difference Equations

3. Analytic Differential Equations

4. Fixed Points of a Fractional Linear Transformation

5. Cauchy's Formula for C Functions

6. Cauchy's Theorem for Locally Integrable Vector Fields

Bibliography

Index

标签
缩略图
书名 复分析(第4版)
副书名
原作名
作者 S.Lang
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787506260060
开本 24开
页数 485
版次 1
装订 平装
字数
出版时间 2003-06-01
首版时间 2003-06-01
印刷时间 2003-06-01
正文语种
读者对象 研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.584
CIP核字
中图分类号
丛书名
印张 21
印次 1
出版地 北京
222
147
21
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2003-3770
版权提供者 Springer-Verlag
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/14 20:27:38