首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 统计学习基础
内容
编辑推荐

This book is our attempt to bring together many of the important new ideas in learning, and explain them in a statistical framework. While some mathematical details are needed, we emphasize the methods and their conceptual underpinnings rather than their theoretical properties. As a result,we hope that this book will appeal not just to statisticians but also to researchers and practitioners in a wide variety of fields.

目录

Preface

1 Introduction

2 Overview of Supervised Learning

2.1 Introduction

2.2 Variable Types and Terminology

2.3 Two Simple Approaches to Prediction: Least Squares and Nearest Neighbors

2.3.1 Linear Models and Least Squares

2.3.2 Nearest-Neighbor Methods

2.3.3 From Least Squares to Nearest Neighbors

2.4 Statistical Decision Theory

2.5 Local Methods in High Dimensions

2.6 Statistical Models, Supervised Learning and Function Approximation

2.6.1 A Statistical Model for the Joint Distribution Pr(X,Y)

2.6.2 Supervised Learning

2.6.3 Function Approximation

2.7 Structured Regression Models

2.7.1 Difficulty of the Problem

2.8 Classes of Restricted Estimators

2.8.1 Roughness Penalty and Bayesian Methods

2.8.2 Kernel Methods and Local Regression

2.8.3 Basis Functions and Dictionary Methods

2.9 Model Selection and the Bias-Variance Tradeoff

Bibliographic Notes

Exercises

3 Linear Methods for Regression

3.1 Introduction

3.2 Linear Regression Models and Least Squares

3.2.1 Example:Prostate Cancer

3.2.2 The Ganss-Markov Theorem

3.3 Multiple Regression from Simple Univariate Regression

3.3.1 Multiple Outputs

3.4 Subset Selection and Coefficient Shrinkage

3.4.1 Subset Selection

3.4.2 Prostate Cancer Data Example fContinued)

3.4.3 Shrinkage Methods

3.4.4 Methods Using Derived Input Directions

3.4.5 Discussion:A Comparison of the Selection and Shrinkage Methods

3.4.6 Multiple Outcome Shrinkage and Selection

3.5 Compntational Considerations

Bibliographic Notes

Exercises

4 Linear Methods for Classification

4.1 Introduction

4.2 Linear Regression of an Indicator Matrix

4.3 Linear Discriminant Analysis

4.3.1 Regularized Discriminant Analysis

4.3.2 Computations for LDA

4.3.3 Reduced-Rank Linear Discriminant Analysis

4.4 Logistic Regression

4.4.1 Fitting Logistic Regression Models

4.4.2 Example:South African Heart Disease

4.4.3 Quadratic Approximations and Inference

4.4.4 Logistic Regression or LDA7

4.5 Separating Hyper planes

4.5.1 Rosenblatt's Perceptron Learning Algorithm

4.5.2 Optimal Separating Hyper planes

Bibliographic Notes

Exercises

5 Basis Expansions and Regularizatlon

5.1 Introduction

5.2 Piecewise Polynomials and Splines

5.2.1 Natural Cubic Splines

5.2.2 Example: South African Heart Disease (Continued)

5.2.3 Example: Phoneme Recognition

5.3 Filtering and Feature Extraction

5.4 Smoothing Splines

5.4.1 Degrees of Freedom and Smoother Matrices

5.5 Automatic Selection of the Smoothing Parameters

5.5.1 Fixing the Degrees of Freedom

5.5.2 The Bias-Variance Tradeoff

5.6 Nonparametric Logistic Regression

5.7 Multidimensional Splines

5.8 Regularization and Reproducing Kernel Hilbert Spaces . .

5.8.1 Spaces of Phnctions Generated by Kernels

5.8.2 Examples of RKHS

5.9 Wavelet Smoothing

5.9.1 Wavelet Bases and the Wavelet Transform

5.9.2 Adaptive Wavelet Filtering

Bibliographic Notes

Exercises

Appendix: Computational Considerations for Splines

Appendix: B-splines

Appendix: Computations for Smoothing Splines

6 Kernel Methods

6.1 One-Dimensional Kernel Smoothers

6.1.1 Local Linear Regression

6.1.2 Local Polynomial Regression

6.2 Selecting the Width of the Kernel

6.3 Local Regression in Jap

6.4 Structured Local Regression Models in ]ap

6.4.1 Structured Kernels

6.4.2 Structured Regression Functions

6.5 Local Likelihood and Other Models

6.6 Kernel Density Estimation and Classification

6.6.1 Kernel Density Estimation

6.6.2 Kernel Density Classification

6.6.3 The Naive Bayes Classifier

6.7 Radial Basis Functions and Kernels

6.8 Mixture Models for Density Estimation and Classification

6.9 Computational Considerations

Bibliographic Notes

Exercises

7 Model Assessment and Selection

7.1 Introduction

7.2 Bias, Variance and Model Complexity

7.3 The Bias-Variance Decomposition

7.3.1 Example: Bias-Variance Tradeoff

7.4 Optimism of the Training Error Rate

7.5 Estimates of In-Sample Prediction Error

7.6 The Effective Number of Parameters

7.7 The Bayesian Approach and BIC

7.8 Minimum Description Length

7.9 Vapnik Chernovenkis Dimension

7.9.1 Example (Continued)

7.10 Cross-Validation

7.11 Bootstrap Methods

7.11.1 Example (Continued)

Bibliographic Notes

Exercises

8 Model Inference and Averaging

8.1 Introduction

8.2 The Bootstrap and Maximum Likelihood Methods

8.2.1 A Smoothing Example

8.2.2 Maximum Likelihood Inference

8.2.3 Bootstrap versus Maximum Likelihood

8.3 Bayesian Methods

8.4 Relationship Between the Bootstrap and Bayesian Inference

8.5 The EM Algorithm

8.5.1 Two-Component Mixture Model

8.5.2 The EM Algorithm in General

8.5.3 EM as a Maximization-Maximization Procedure

8.6 MCMC for Sampling from the Posterior

8.7 Bagging

8.7.1 Example: Trees with Simulated Data

8.8 Model Averaging and Stacking

8.9 Stochastic Search: Bumping

Bibliographic Notes

Exercises

9 Additive Models, Trees, and Related Methods

10 Boosting and Additive Trees

11 Neural Networks

12 Support Vector Machines and Flexible Discriminants

13 Prototype Methods and Nearest-Neighbors

14 Unsupervised Learning

References

Author Index

Index

标签
缩略图
书名 统计学习基础
副书名
原作名
作者 (美)哈斯蒂
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787506292313
开本 16开
页数 533
版次 1
装订 平装
字数
出版时间 2009-01-01
首版时间 2009-01-01
印刷时间 2009-01-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 经济金融-金融会计-会计
图书小类
重量 0.678
CIP核字
中图分类号 C8
丛书名
印张 35
印次 1
出版地 北京
225
150
23
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2008-1334
版权提供者 Springer-Verlag
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/19 15:12:32