首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 模型参数估计的反问题理论与方法(影印版)(精)/国外数学名著系列
内容
编辑推荐

Prompted by recent developments in inverse theory, Inverse Problem Theory and Methods for Model Parameter Estimation is a completely rewritten version of a 1987 book by the same author. In this version there are many algorithmic details for Monte Carlo methods, leastsquares discrete problems, and least-squares problems involving functions. In addition, some notions are clarified, the role of optimization techniques is underplayed, and Monte Carlo methods are taken much more seriously. The first part of the book deals exclusively with discrete inverse problems with afinite number of parameters, while the second part of the book deals with general inverse problems.

...

目录

Preface

1  The General Discrete Inverse Problem

  1.1  Model Space and Data Space

  1.2  States of Information

  1.3  Forward Problem

  1.4  Measurements and A Priori Information

  1.5  Defining the Solution of the Inverse Problem

  1.6  Using the Solution of the Inverse Problem

2  Monte Carlo Methods

  2.1  Introduction

  2.2  The Movie Strategy for Inverse Problems

  2.3  Sampling Methods

  2.4  Monte Carlo Solution to Inverse Problems

 2.5  Simulated Annealing

3  The Least-Squares Criterion

 3.1  Preamble: The Mathematics of Linear Spaces

 3.2  The Least-Squares Problem

 3.3  Estimating Posterior Uncertainties

 3.4  Least-Squares Gradient and Hessian

4  Least-Absolute-Values Criterion and Minimax Criterion

 4.1  Introduction

 4.2  Preamble:ln-Norms

 4.3  The ln-Norm Problem

 4.4  The l1-Norm Criterion for Inverse Problems

 4.5  The ln-Norm Criterion for Inverse Problems

5  Functional Inverse Problems

 5.1  Random Functions

 5.2  Solution of General Inverse Problems

 5.3  Introduction to Functional Least Squares

 5.4  Derivative and Transpose Operators in Functional Spaces

 5.5  General Least-Squares Inversion

 5.6  Example: X-Ray Tomography as an Inverse Problem

 5.7  Example: Travel-Time Tomography

 5.8  Example: Nonlinear Inversion of Elastic Waveforms

6  Appendices

 6.1  Volumetric Probability and Probability Density

 6.2  Homogeneous Probability Distributions

 6.3  Homogeneous Distribution for Elastic Parameters

 6.4  Homogeneous Distribution for Second-Rank Tensors

 6.5  Central Estimators and Estimators of Dispersion

 6.6  Generalized Gaussian

 6.7  Log-Normal Probability Density

 6.8  Chi-Squared Probability Density

 6.9  Monte Carlo Method of Numerical Integration

 6.10  Sequential Random Realization

 6.11  Cascaded Metropolis Algorithm

 6.12  Distance and Norm

 6.13  The Different Meanings of the Word Kernel

 6.14  Transpose and Adjoint of a Differential Operator

 6.15  The Bayesian Viewpoint of Backus (1970)

 6.16  The Method of Backus and Gilbert

 6.17  Disjunction and Conjunction of Probabilities

 6.18  Partition of Data into Subsets

 6.19  Marginalizing in Linear Least Squares

 6.20  Relative Information of Two Gaussians

 6.21  Convolution of Two Gaussians

 6.22  Gradient-Based Optimization Algorithms

 6.23  Elements of Linear Programming

 6.24  Spaces and Operators

 6.25  Usual Functional Spaces

 6.26  Maximum Entropy Probability Density

 6.27  Two Properties of ln-Norms

 6.28  Discrete Derivative Operator

 6.29  Lagrange Parameters

 6.30  Matrix Identities

 6.31  Inverse of a Partitioned Matrix

 6.32  Norm of the Generalized Gaussian

7  Problems

 7.1  Estimation of the Epicentral Coordinates of a Seismic Event

 7.2  Measuring the Acceleration of Gravity

 7.3  Elementary Approach to Tomography

 7.4  Linear Regression with Rounding Errors

 7.5  Usual Least-Squares Regression

 7.6  Least-Squares Regression with Uncertainties in Both Axes

 7.7  Linear Regression with an Outlier

 7.8  Condition Number and A Posteriori Uncertainties

 7.9  Conjunction of Two Probability Distributions

 7.10  Adjoint of a Covariance Operator

 7.11  Problem 7.1 Revisited

 7.12  Problem 7.3 Revisited

 7.13  An Example of Partial Derivatives

 7.14  Shapes of the ln-Norm Misfit Functions

 7.15  Using the Simplex Method

 7.16  Problem 7.7 Revisited

 7.17  Geodetic Adjustment with Outliers

 7.18  Inversion of Acoustic Waveforms

 7.19  Using the Backus and Gilbert Method

 7.20  The Coefficients in the Backus and Gilbert Method

 7.21  The Norm Associated with the 1D Exponential Covariance

 7.22  The Norm Associated with the 1D Random Walk

 7.23  The Norm Associated with the 3D Exponential Covariance

References and References for General Reading

Index

标签
缩略图
书名 模型参数估计的反问题理论与方法(影印版)(精)/国外数学名著系列
副书名
原作名
作者 (意)塔兰托拉
译者
编者
绘者
出版社 科学出版社
商品编码(ISBN) 9787030234841
开本 16开
页数 342
版次 1
装订 精装
字数 431
出版时间 2009-01-01
首版时间 2009-01-01
印刷时间 2009-01-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.676
CIP核字
中图分类号 O211.67
丛书名
印张 22.5
印次 1
出版地 北京
245
174
20
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2008-5111
版权提供者
定价
印数 2000
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/16 4:49:20