本书为《国外数学名著系列》丛书之一。该丛书是科学出版社组织学术界多位知名院士、专家精心筛选出来的一批基础理论类数学著作,读者对象面向数学系高年级本科生、研究生及从事数学专业理论研究的科研工作者。
本册为《几何(Ⅲ曲面理论影印版)57》,本书包含了欧几里德的几何曲面理论。
图书 | 几何(Ⅲ曲面理论影印版)(精)/国外数学名著系列 |
内容 | 编辑推荐 本书为《国外数学名著系列》丛书之一。该丛书是科学出版社组织学术界多位知名院士、专家精心筛选出来的一批基础理论类数学著作,读者对象面向数学系高年级本科生、研究生及从事数学专业理论研究的科研工作者。 本册为《几何(Ⅲ曲面理论影印版)57》,本书包含了欧几里德的几何曲面理论。 内容推荐 The theory of surfaces in Euclidean spaces is remarkably rich in deep results and applications.This volume of the Encyclopaedia is concerned mainly with the connection between the theory of embedded surfaces and Riemannian geometry and with the geometry of surfaces as influenced by intrinsic metrics. 目录 Preface Chapter 1. The Geometry of Two-Dimensional Manifolds and Surfaces in En 1. Statement of the Problem 1.1. Classes of Metrics and Classes of Surfaces. Geometric Groups and Geometric Properties 2. Smooth Surfaces 2.1. Types of Points 2.2. Classes of Surfaces 2.3. Classes of Metrics 2.4. G-Connectedness 2.5. Results and Conjectures 2.6. The Conformal Group 3. Convex, Saddle and Developable Surfaces with No Smoothness Requirement 3.1. Classes of Non-Smooth Surfaces and Metrics 3.2. Questions of Approximation 3.3. Results and Conjectures 4. Surfaces and Metrics of Bounded Curvature 4.1. Manifolds of Bounded Curvature 4.2. Surfaces of Bounded Extrinsic Curvature Chapter 2. Convex Surfaces 1. Weyl's Problem 1.1. Statement of the Problem 1.2. Historical Remarks 1.3. Outline of One of the Proofs 2. The Intrinsic Geometry of Convex Surfaces. The Generalized Weyl Problem 2.1. Manifolds of Non-Negative Curvature in the Sense of Aleksandrov 2.2. Solution of the Generalized Weyl Problem 2.3. The Gluing Theorem 3. Smoothness of Convex Surfaces 3.1. Smoothness of Convex Immersions 3.2. The Advantage of Isothermal Coordinates 3.3. Consequences of the Smoothness Theorems 4. Bendings of Convex Surfaces 4.1. Basic Concepts 4.2. Smoothness of Bendings 4.3. The Existence of Bendings 4.4. Connection Between Different Forms of Bendings 5. Unbendability of Closed Convex Surfaces 5.1. Unique Determination 5.2. Stability in Weyl's Problem 5.3. Use of the Bending Field 6. Infinite Convex Surfaces 6.1. Non-Compact Surfaces 6.2. Description of Bendings 7. Convex Surfaces with Given Curvatures 7.1. Hypersurfaces 7.2. Minkowski's Problem 7.3. Stability 7.4. Curvature Functions and Analogues of the Minkowski Problem 7.5. Connection with the Monge-Ampere Equations 8. Individual Questions of the Connection Between the Intrinsic and Extrinsic Geometry of Convex Surfaces 8.1. Properties of Surfaces 8.2. Properties of Curves 8.3. The Spherical Image of a Shortest Curve 8.4. The Possibility of Certain Singularities Vanishing Under Bendings Chapter 3. Saddle Surfaces 1. Efimov's Theorem and Conjectures Associated with It 1.1. Sufficient Criteria for Non-Immersibility in E3 1.2. Sufficient Criteria for Immersibility in E3 1.3. Conjecture About a Saddle Immersion in E" 1.4. The Possibility of Non-Immersibility when the Manifold is Not Simply-Connected 2. On the Extrinsic Geometry of Saddle Surfaces 2.1. The Variety of Saddle Surfaces 2.2. Tapering Surfaces 3. Non-Regular Saddle Surfaces 3.1. Definitions 3.2. Intrinsic Geometry 3.3. Problems of Immersibility 3.4. Problems of Non-Immersibility Chapter 4. Surfaces of Bounded Extrinsic Curvature 1. Surfaces of Bounded Positive Extrinsic Curvature 1.1. Extrinsic Curvatures of a Smooth Surface 1.2. Extrinsic Curvatures of a General Surface 1.3. Inequalities 2. The Role of the Mean Curvature 2.1. The Mean Curvature of a Non-Smooth Surface 2.2. Surfaces of Bounded Mean Curvature 2.3. Mean Curvature as First Variation of the Area 3. C1-Smooth Surfaces of Bounded Extrinsic Curvature 3.1. The Role of the Condition of Boundedness of the Extrinsic Curvature 3.2. Normal C1-Smooth Surfaces 3.3. The Main Results 3.4. Gauss's Theorem 3.5. Cl-Smooth Surfaces 4. Polyhedra 4.1. The Role of Polyhedra in the General Theory 4.2. Polyhedral Metric and Polyhedral Surface 4.3. Results and Conjectures 5. Appendix. Smoothness Classes Comments on the References References |
标签 | |
缩略图 | ![]() |
书名 | 几何(Ⅲ曲面理论影印版)(精)/国外数学名著系列 |
副书名 | |
原作名 | |
作者 | (俄罗斯)布拉格 |
译者 | |
编者 | |
绘者 | |
出版社 | 科学出版社 |
商品编码(ISBN) | 9787030235008 |
开本 | 16开 |
页数 | 256 |
版次 | 1 |
装订 | 精装 |
字数 | 323 |
出版时间 | 2009-01-01 |
首版时间 | 2009-01-01 |
印刷时间 | 2009-01-01 |
正文语种 | 英 |
读者对象 | 青年(14-20岁),研究人员,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.552 |
CIP核字 | |
中图分类号 | O18 |
丛书名 | |
印张 | 16.75 |
印次 | 1 |
出版地 | 北京 |
长 | 246 |
宽 | 174 |
高 | 18 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | 图字01-2008-5462 |
版权提供者 | 德国施普林格出版公司 |
定价 | |
印数 | 2500 |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。