首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 ELEMENTARY DIFFERENTIAL EQUATIONGS(精)
内容
编辑推荐

This edition, like its predecessors, is written from the viewpoint of the applied mathe-matician, whose interest in differential equations may be highly theoretical, intensely practical, or somewhere in between. We have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications.

The book is written primarily for undergraduate students of mathematics, science,or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for reading the book is a working knowledge of calculus, gained from a normal two- or three-semester course sequence or its equivalent.

目录

Preface vii

Chapter I Introduction I

1.1  Some Basic Mathematical Models; Direction Fields

1.2  Solutions of Some Differential Equations 9

1.3  Classification of Differential Equations 17

1.4  Historical Remarks 23

Chapter 2 First Order Differential Equations 29

2.1  Linear Equations with Variable Coefficients 29

2.2  Separable Equations 40

2.3  Modeling with First Order Equations 47

2.4  Differences Between Linear and Nonlinear Equations 64

2.5  Autonomous Equations and Population Dynamics 74

2.6  Exact Equations and Integrating Factors 89

2.7  Numerical Approximations: Euler's Method 96

2.8  The Existence and Uniqueness Theorem 105

2.9  First Order Difference Equations 115

Chapter 3 Second Order Linear Equations 129

3.1  Homogeneous Equations with Constant Coefficients 129

3.2  Fundamental Solutions of Linear Homogeneous Equations 137

3.3  Linear Independence and the Wronskian 147

3.4  Complex Roots of the Characteristic Equation 153

3.5  Repeated Roots; Reduction of Order 160

3.6  Nonhomogeneous Equations; Method of Undetermined Coefficients 169

3.7  Variation of Parameters 179

3.8  Mechanical and Electrical Vibrations 186

3.9  Forced Vibrations 200

Chapter 4 Higher Order Linear Equations 209

4.1  General Theory of nth Order Linear Equations 209

4.2  Homogeneous Equations with Constant Coeffients 214

4.3  The Method of Undetermined Coefficients 222

4.4  The Method of Variation of Parameters 226

Chapter 5 Series Solutions of Second Order Linear Equations 231

5.1  Review of Power Series 231

5.2  Series Solutions near an Ordinary Point, Part I 238

5.3  Series Solutions near an Ordinary Point, Part II 249

5.4  Regular Singular Points 255

5.5  Euler Equations 260

5.6  Series Solutions near a Regular Singular Point, Part I 267

5.7  Series Solutions near a Regular Singular Point, Part II 272

5.8  Bessel's Equation 280

Chapter 6 The Laplace Transform 293

6.1  Definition of the Laplace Transform 293

6.2  Solution of Initial Value Problems 299

6.3  Step Functions 310

6.4  Differential Equations with Discontinuous Forcing Functions 317

6.5  Impulse Functions 324

6.6  The Convolution Integral 330

Chapter 7 Systems of First Order Linear Equations 339

7.1  Introduction 339

7.2  Review of Matrices 348

7.3  Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues,Eigenvectors 357

7.4  Basic Theory of Systems of First Order Linear Equations 368

7.5  Homogeneous Linear Systems with Constant Coefficients 373

7.6  Complex Eigenvalues 384

7.7  Fundamental Matrices 393

7.8  Repeated Eigenvalues 401

7.9  Nonhomogeneous Linear Systems 411

Chapter 8 Numerical Methods 419

8.1  The Euler or Tangent Line Method 419

8.2  Improvements on the Euler Method 430

8.3  The Runge-Kutta Method 435

8.4  Multistep Methods 439

8.5  More on Errors; Stability 445

8.6  Systems of First Order Equations 455

Chapter 9 Nonlinear Differential Equations and Stability 459

9.1  The Phase Plane; Linear Systems 459

9.2  Autonomous Systems and Stability 471

9.3  Almost Linear Systems 479

9.4  Competing Species 491

9.5  Predator-Prey Equations 503

9.6  Liapunov's Second Method 511

9.7  Periodic Solutions and Limit Cycles 521

9.8  Chaos and Strange Attractors; the Lorenz Equations 532

Answers to Problems 541

Index 587

标签
缩略图
书名 ELEMENTARY DIFFERENTIAL EQUATIONGS(精)
副书名
原作名
作者 BOYCE.DIPRIMA
译者
编者
绘者
出版社 JOHN WILEY&SONS INC
商品编码(ISBN) 9780471319986
开本 16开
页数 592
版次 1
装订 精装
字数
出版时间 2001-01-01
首版时间 2001-01-01
印刷时间 2001-01-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 1.358
CIP核字
中图分类号
丛书名
印张 37
印次 1
出版地 美国
260
208
23
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 US
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/17 6:27:56