Chapter 1 The Method of Order Reduction
 1.1 Introduction
 1.2 First order off-center difference method
 1.3 Second order off-center difference method
 1.4 Method of fictitious domain
 1.5 Method of order reduction
 1.6 Comparisons of the four difference methods
 1.7 Conclusion
Chapter 2 Linear Parabolic Equations
 2.1 Introduction
 2.2 Derivative boundary conditions
 2.3 Derivation of the difference scheme
 2.4 A priori estimate for the difference solution
 2.5 Solvability, stability and convergence
 2.6 Two dimensional parabolic equations
 2.7 Conclusion
Chapter 3 Linear Hyperbolic Equations
 3.1 Introduction
 3.2 Derivation of the difference scheme
 3.3 A priori estimate
 3.4 Solvability, stability and convergence
 3.5 Numerical examples
 3.6 Conclusion
Chapter 4 Linear Elliptic Equations
 4.1 Introduction
 4.2 Derivation of the difference scheme
 4.3 Solvability, stability and convergence
 4.4 The Neumann boundary value problem
 4.5 A numerical example
 4.6 Conclusion
Chapter 5 Heat Equations with an Inner Boundary Condition
 5.1 Introduction
 5.2 Derivation of the difference scheme
 5.3 Solvability, stability and convergence
 5.4 A numerical example
 5.5 Conclusion
Chapter 6 Heat Equations with a Nonlinear Boundary Condition
 6.1 Introduction
 6.2 Derivation of the difference scheme
 6.3 Convergence of the difference scheme
 6.4 Unique solvability of the difference scheme
 6.5 Iterative algorithm and a numerical example
 6.6 Conclusion
Chapter 7 Nonlocal Parabolic Equations
 7.1 Introduction
 7.2 Derivation of the difference scheme
 7.3 A prior estimate
 7.4 Convergence and solvability
 7.5 Extrapolation method
 7.6 Implementation of the difference scheme
 7.7 Conclusion
Chapter 8 Fractional Diffusion-wave Equations
 8.1 Introduction
 8.2 Approximation of the fractional order derivatives
 8.3 Derivation of the difference scheme
 8.4 Analysis of the difference scheme
 8.5 A compact difference scheme
 8.6 A slow diffusion system
 8.7 A numerical example
 8.8 Conclusion
Chapter 9 Wave Equations with Heat Conduction
 9.1 Introduction
 9.2 Boundary conditions
 9.3 Derivation of the difference scheme
 9.4 Solvability, stability and convergence
 9.5 A practical recurrence algorithm
 9.6 The degenerate problem
 9.7 Conclusion
 Chapter 10 Timoshenko Beam Equations with Boundary Feedback
 10.1 Introduction
 10.2 Derivation of the difference scheme
 10.3 Analysis of the difference scheme
 10.4 A numerical example
 10.5 Conclusion
Chapter 11 Thermoplastic Problems with Unilateral Constraint
 11.1 Introduction
 11.2 Derivation of the difference scheme
 11.3 Stability and convergence
 11.4 Numerical examples
 11.5 Conclusion
Chapter 12 Thermoelastic Problems with Two-rod Contact
 12.1 Introduction
 12.2 Derivation of the difference scheme
 12.3 Stability and convergence
 12.4 Solvability and iterative algorithm
 12.5 Numerical examples
 12.6 Conclusion
Chapter 13 Nonlinear Parabolic Systems
 13.1 Introduction
 13.2 Difference scheme
 13.3 Unique solvability and convergence
 13.4 A numerical example
 13.5 Conclusion
Chapter 14 Heat Equations in Unbounded Domains
 14.1 Introduction
 14.2 Derivation of the difference scheme
 14.3 Analysis of the difference scheme
 14.4 A numerical example
 14.5 Conclusion
Chapter 15 Heat Equations on a Long Strip
 15.1 Introduction
 15.2 Derivation of the difference scheme
 15.3 Analysis of the difference scheme
 15.4 A numerical example
 15.5 Conclusion
Chapter 16 Burgers Equations in Unbounded Domains
 16.1 Introduction
 16.2 Reformulation of the problem
 16.3 Derivation of the difference scheme
 16.4 Solvability and stability of the difference scheme
 16.5 Convergence of the difference scheme
 16.6 A numerical example
 16.7 Conclusion
Chapter 17 Superthermal Electron Transport Equations
 17.1 Introduction
 17.2 Derivation of the difference scheme
 17.3 Analysis of the difference scheme
 17.4 A numerical example
 17.5 Conclusion
Chapter 18 A Model in Oil Deposit
 18.1 Introduction
 18.2 Difference scheme and the main results
 18.3 Derivation of the difference scheme
 18.4 Solvability and convergence
 18.5 Conclusion
Chapter 19 The Two-dimensional Cahn-Hillard Equation
 19.1 Introduction
 19.2 Derivation of the difference scheme
 19.3 Solvability and convergence of the difference scheme
 19.4 Conclusion
Chapter 20 ADI and Compact ADI Methods
 20.1 Introduction
 20.2 Notations and auxiliary lemmas
 20.3 Error analysis of the ADI solution and its extrapolation
 20.4 Error estimates of the compact ADI method
 20.5 A numerical example
 20.6 Conclusion
Chapter 21 Time-dependent SchrSdinger Equations
 21.1 Introduction
 21.2 One-dimensional Crank-Nicolson scheme
 21.3 An extension to the high-order compact scheme
 21.4 Extensions to multidimensional problems
 21.5 Treatment of the nonhomogeneous boundary conditions
 21.6 A numerical example
 21.7 Conclusion
Bibliography