首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 金融衍生品数学模型(第2版)
内容
编辑推荐

本书旨在运用金融工程方法讲述模型衍生品背后的理论,重点介绍了对大多数衍生证券很常用的鞅定价原理。书中还分析了固定收入市场中的大量金融衍生品,强调了定价、对冲及其风险策略。本书从著名的期权定价模型的Black-Scholes-Merton公式开始,讲述衍生品定价模型和利率模型中的最新进展,解决各种形式衍生品定价问题的解析技巧和数值方法。

目录

Preface

1 Introduction to Derivative Instruments

 1.1 Financial Options and Their Trading Strategies

1.1.1 Trading Strategies Involving Options

 1.2 Rational Boundaries for Option Values

1.2.1 Effects of Dividend Payments

1.2.2 Put-Call Parity Relations

1.2.3 Foreign Currency Options

 1.3 Forward and Futures Contracts

1.3.1 Values and Prices of Forward Contracts

1.3.2 Relation between Forward and Futures Prices

 1.4 Swap Contracts

1.4.1 Interest Rate Swaps

1.4.2 Currency Swaps

 1.5 Problems

2 Financial Economics and Stochastic Calculus

 2.1 Single Period Securities Models

2.1.1 Dominant Trading Strategies and Linear Pricing Measures

2.1.2 Arbitrage Opportunities and Risk Neutral Probability Measures

2.1.3 Valuation of Contingent Claims

2.1.4 Principles of Binomial Option Pricing Model

 2.2 Filtrations, Martingales and Multiperiod Models

2.2.1 Information Structures and Filtrations

2.2.2 Conditional Expectations and Martingales

2.2.3 Stopping Times and Stopped Processes

2.2.4 Multiperiod Securities Models

2.2.5 Multiperiod Binomial Models

 2.3 Asset Price Dynamics and Stochastic Processes

2.3.1 Random Walk Models

2.3.2 Brownian Processes

 2.4 Stochastic Calculus: Ito's Lemma and Girsanov's Theorem

2.4.1 Stochastic Integrals

2.4.2 Ito's Lemma and Stochastic Differentials

2.4.3 Ito's Processes and Feynman-Kac Representation Formula

2.4.4 Change of Measure: Radon-Nikodym Derivative and Girsanov's Theorem.

 2.5 Problems

3 Option Pricing Models: Blaek-Scholes-Merton Formulation

 3.1 Black-Scholes-Merton Formulation

3.1.1 Riskless Hedging Principle

3.1.2 Dynamic Replication Strategy

3.1.3 Risk Neutrality Argument

 3.2 Martingale Pricing Theory

3.2.1 Equivalent Martingale Measure and Risk Neutral Valuation

3.2.2 Black-Scholes Model Revisited

 3.3 Black-Scholes Pricing Formulas and Their Properties

3.3.1 Pricing Formulas for European Options

3.3.2 Comparative Statics

 3.4 Extended Option Pricing Models

3.4.1 Options on a Dividend-Paying Asset

3.4.2 Futures Options

3.4.3 Chooser Options

3.4.4 Compound Options

3.4.5 Merton's Model of Risky Debts

3.4.6 Exchange Options

3.4.7 Equity Options with Exchange Rate Risk Exposure

 3.5 Beyond the Black-Scholes Pricing Framework

3.5.1 Transaction Costs Models

3.5.2 Jump-Diffusion Models

3.5.3 Implied and Local Volatilities

3.5.4 Stochastic Volatility Models

 3.6 Problems

4 Path Dependent Options

 4.1 Barrier Options

4.1.1 European Down-and-Out Call Options

4.1.2 Transition Density Function and First Passage Time Density

4.1.3 Options with Double Barriers

4.1.4 Discretely Monitored Barrier Options

 4.2 Lookback Options

4.2.1 European Fixed Strike Lookback Options

4.2.2 European Floating Strike Lookback Options

4.2.3 More Exotic Forms of European Lookback Options

4.2.4 Differential Equation Formulation

4.2.5 Discretely Monitored Lookback Options

 4.3 Asian Options.

4.3.1 Partial Differential Equation Formulation

4.3.2 Continuously Monitored Geometric Averaging Options

4.3.3 Continuously Monitored Arithmetic Averaging Options

4.3.4 Put-Call Parity and Fixed-Floating Symmetry Relations

4.3.5 Fixed Strike Options with Discrete Geometric Averaging

4.3.6 Fixed Strike Options with Discrete Arithmetic Averaging

 4.4 Problems

5 American Options

 5.1 Characterization of the Optimal Exercise Boundaries

5.1.1 American Options on an Asset Paying Dividend Yield

5.1.2 Smooth Pasting Condition.

5.1.3 Optimal Exercise Boundary for an American Call

5.1.4 Put-Call Symmetry Relations.

5.1.5 American Call Options on an Asset Paying Single Dividend

5.1.6 One-Dividend and Multidividend American Put Options

 5.2 Pricing Formulations of American Option Pricing Models

5.2.1 Linear Complementarity Formulation

5.2.2 Optimal Stopping Problem

5.2.3 Integral Representation of the Early Exercise Premium

5.2.4 American Barrier Options

5.2.5 American Lookback Options

 5.3 Analytic Approximation Methods

5.3.1 Compound Option Approximation Method

5.3.2 Numerical Solution of the Integral Equation

5.3.3 Quadratic Approximation Method

 5.4 Options with Voluntary Reset Rights

5.4.1 Valuation of the Shout Floor

5.4.2 Reset-Strike Put Options

 5. 5Problems

6 Numerical Schemes for Pricing Options

 6.1 Lattice Tree Methods

6.1.1 Binomial Model Revisited

6.1.2 Continuous Limits of the Binomial Model

6.1.3 Discrete Dividend Models

6.1.4 Early Exercise Feature and Callable Feature

6.1.5 Trinomial Schemes

6.1.6 Forward Shooting Grid Methods

 6.2 Finite Difference Algorithms

6.2.1 Construction of Explicit Schemes

6.2.2 Implicit Schemes and Their Implementation Issues

6.2.3 Front Fixing Method and Point Relaxation Technique

6.2.4 Truncation Errors and Order of Convergence

6.2.5 Numerical Stability and Oscillation Phenomena

6.2.6 Numerical Approximation of Auxiliary Conditions

 6.3 Monte Carlo Simulation

6.3.1 Variance Reduction Techniques

6.3.2 Low Discrepancy Sequences

6.3.3 Valuation of American Options

 6.4 Problems

7 Interest Rate Models and Bond Pricing

 7.1 Bond Prices and Interest Rates

7.1.1 Bond Prices and Yield Curves

7.1.2 Forward Rate Agreement, Bond Forward and Vanilla Swap

7.1.3 Forward Rates and Short Rates

7.1.4 Bond Prices under Deterministic Interest Rates

 7.2 One-Factor Short Rate Models

7.2.1 Short Rate Models and Bond Prices

7.2.2 Vasicek Mean Reversion Model

7.2.3 Cox-Ingersoll-Ross Square Root Diffusion Model

7.2.4 Generalized One-Factor Short Rate Models

7.2.5 Calibration to Current Term Structures of Bond Prices

 7.3 Multifactor Interest Rate Models

7.3.1 Short Rate/Long Rate Models

7.3.2 Stochastic Volatility Models

7.3.3 Affine Term Structure Models

 7.4 Heath-Jarrow-Morton Framework

7.4.1 Forward Rate Drift Condition

7.4.2 Short Rate Processes and Theft Markovian Characterization

7.4.3 Forward LIBOR Processes under Ganssian HIM Framework

 7.5 Problems

8 Interest Rate Derivatives: Bond Options, LIBOR and Swap Products

 8.1 Forward Measure and Dynamics of Forward Prices

8.1.1 Forward Measure

8.1.2 Pricing of Equity Options under Stochastic Interest Rates

8.1.3 Futures Process and Futures-Forward Price Spreadi

 8.2 Bond Options and Range Notes

8.2.1 Options on Discount Bonds and Coupon-Bearing Bonds

8.2.2 Range Notes

 8.3 Caps and LIBOR Market Models

8.3.1 Pricing of Caps under Gaussian HJM Framework

8.3.2 Black Formulas and LIBOR Market Models

 8.4 Swap Products and Swaptions

8.4.1 Forward Swap Rates and Swap Measure

8.4.2 Approximate Pricing of Swaption under Lognormal LIBOR Market Model

8.4.3 Cross-Currency Swaps

 8.5 Problems

References

Author Index

Subject Index

标签
缩略图
书名 金融衍生品数学模型(第2版)
副书名
原作名
作者 郭宇权
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510005503
开本 24开
页数 530
版次 1
装订 平装
字数
出版时间 2010-04-01
首版时间 2010-04-01
印刷时间 2010-04-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 经济金融-金融会计-金融
图书小类
重量 0.66
CIP核字
中图分类号 F830.9
丛书名
印张 23
印次 1
出版地 北京
224
148
23
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2009-5395
版权提供者 Springer Berlin Heidelberg
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/11 20:35:50