首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 扩散过程及其样本轨道
内容
编辑推荐

本书是Springer《数学经典教材》系列之一,对与扩散现象有关的随机过程产生持久而深刻的影响。不少数学家受益于本书一维和多维扩散过程的描述和独到的布朗运动数学见解。传承这一系列书的风格,行文简洁流畅。每章节后面都配有问题并有部分解答,很适合作为教材和自学用书。

目录

Prerequisites

Chapter 1. The standard BRowNian motion

 1.1. The standard random walk

 1.2. Passage times for the standard random walk

 1.3. HINCIN'S proof of the DE MOIVRE-LAPLACE limit theorem

 1.4. The standard BROWNian motion

 1.5. P. LEVY's construction

 1.6. Strict MAgKOV character

 1.7. Passage times for the standard BgowNian motion

Note 1: Homogeneous differential processes with increasing paths

 1.8. KOLMOGOROV'S test and the law of the iterated logarithm

 1.9. P. LEVY'S HOLDER condition

 1.10. Approximating the BgowNian motion by a random walk

Chapter 2. BROWNian local times

 2.1. The reflecting BRowNian motion

 2.2. P. LEVY'S local time

 2.3. Elastic BgowNian motion

 2.4. t+ and down-crossings

 2.5. t+ as HAUSDORFF-BESICOVITCH 1/2-dimensional measure

Note 1: Submartingales

Note 2: HAUSDORFF measure and dimension

 2.6. Kxc's formula for BRowNian funetionals

 2.7. BESSEL processes

 2.8. Standard BRowNian local time

 2.9. BRowNian excursions

 2.10. Application of the BESSEL process to BROWNian excursions

 2.11. A time substitution

Chapter 3. The general t-dimensional diffusion

 3.t. Definition

 3.2. MARKOV times

 3.3. Matching numbers

 3.4. Singular points

 3.5. Decomposing the general diffusion into simple pieces

 3.6. GREEN operators and the spaceD

 3.7. Generators

 3.8. Generators continued

 3.9. Stopped diffusion

Chapter 4. Generators

 4.1. A general view

 4.2.  as local differential operator: conservative non-singular case

 4.3.  as local differential operator: general non-singular case

 4.4. A second proof

 4.5.  at an isolated singular point

 4.6. Solving

 4.7.  as global differential operator: non-singular case

 4.8.  on the shunts

 4.9.  as global differential operator: singular case

 4.10. Passage times

Note 1: Differential processes with increasing paths

 4.ft. Eigen-differential expansions for GREEN functions and transition

densities

 4.12. KOLMOGOROV'S test

Chapter 5. Time changes and killing

 5.1. Construction of sample paths: a general view

 5.2. Time changes

 5.3. Time changes

 5.4. Local times

 5.5. Subordination and chain rule

 5.6. Killing times

 5.7. FELLER'S BROWNlan motions

 5.8. IKEDA'S example

 5.9. Time substitutions must come from local time integrals

 5.10. Shunts

 5.11. Shunts with killing

 5.12. Creation of mass

 5.13. A parabolic equation

 5.f4. Explosions

 5.15. A non-linear parabolic equation

Chapter 6. Local and inverse local times

 6.1. Local and inverse local times

 6.2. LEVY measures

 6.3. t and the intervals of [0, + ∞)

 6.4. A counter example: t and the intervals of [0, +∞)

 6.5a t and downcrossings

 6.5b t as HAUSDORFF measure

 6.5c t as diffusion

 6.5d Excursions

 6.6. Dimension numbers

 6.7. Comparison tests Notension Dimension numbers and fractional dimensional capacities

 6.8. An individual ergodic theorem

Chapter 7. BRowNian motion in several dimensions

 7.1. Diffusion in several dimensions

 7.2. The standard BRowNian motion in several dimensions

 7.3. Wandering out to oo

 7.4. GREENian domains and GREEN functions

 7.5. Excessive functions

 7.6. Application to the spectrum of /1/2

 7.7. Potentials and hitting probabilities

 7.8. NEWTONian capacities

 7.9. GAUSS's quadratic form

 7.10. WIENER'S test

 7.11. Applicatiors of WIENER'S test

 7.12. DIRICHLET problem

 7.13. NEUHANN problem

 7.14. Space-time BROWNian moticn

 7.15. Spherical BROWNian motion and skew products

 7.16. Spinning

 7.17. An individual ergodic theorem for the standard 2-dimensional BROWNian motion

 7.18. Covering BROWNian motions

 7.19. Diffusions with BROWNian hitting probabilities

 7.20. Right-continuous paths

 7.21. RIESZ potentials

Chapter 8. A general view of diffusion in several dimensions

 8.1. Similar diffusions

 8.2. as differential operater

 8.3. Time substitutions

 8.4. Potentials

 8.5. Boundaries

 8.6. Elliptic operators

 8.7. FELLER'S little boundary and tail algebras

Bibliography

List of notations

Index

标签
缩略图
书名 扩散过程及其样本轨道
副书名
原作名
作者 (日)伊藤清
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510005268
开本 24开
页数 321
版次 1
装订 平装
字数
出版时间 2010-01-01
首版时间 2010-01-01
印刷时间 2010-01-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.414
CIP核字
中图分类号 O211.6
丛书名
印张 14.5
印次 1
出版地 北京
224
149
15
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/9 7:38:47