首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 代数拓扑基础教程
内容
编辑推荐

This book is intended to serve as a textbook for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory (including cup products and the duality theorems of Poincare and Alexander). It consists of material from the first five chapters of the author's earlier book Algebraic Topology: An Introduction (GTM 56) together with almost all of his book Singular Homology Theory (GTM 70). This material from the two earlier books has been revised, corrected, and brought up to date. There is enough here for a full-year course.

目录

Preface

Notation and Terminology

CHAPTER Ⅰ

Two-Dimensional Manifolds

1.Introduction

2.Definition and Examples of n-Manifolds

3.Orientable vs.Nonorientable Manifolds

4.Examples of Compact, Connected 2-Manifolds

5.Statement of the Classification Theorem for Compact Surfaces

6.Triangulations of Compact Surfaces

7.Proof of Theorem 5.1

8.The Euler Characteristic of a Surface

References

CHAPTER Ⅱ The Fundamental Group

1.Introduction

2.Basic Notation and Terminology

3.Definition of the Fundamental Group of a Space

4.The Effect of a Continuous Mapping on the Fundamental Group

5.The Fundamental Group of a Circle IS Infinite Cyclic

6.Application: The Brouwer Fixed-Point Theorem in Dimension 2

7.The Fundamental Group of a Product Space

8.Homotopy Type and Homotopy Equivalence of Spaces

References

CHAPTER Ⅲ Free Groups and Free Products of Groups

1.Introduction

2.The Weak Product of Abelian Groups

3.Free Abelian Groups

4.Free Products of Groups

5.Free Groups

6.The Presentation of Groups by Generators and Relations

7.Universal Mapping Problems

References

CHAPTER Ⅳ Seifert and Van Kampen Theorem on the Fundamental Group of the Union of Two Spaces.Applications

1.Introduction

2.Statement and Proof of the Theorem of Seifert and Van Kampen

3.First Application of Theorem 2.1

4.Second Application of Theorem 2.1

5.Structure of the Fundamental Group of a Compact Surface

6.Application to Knot Theory

7.Proof of Lemma 2.4

References

CHAPTER Ⅴ Covering Spaces

1.Introduction

2.Definition and Some Examples of Covering Spaces

3.Lifting of Paths to a Covering Space

4.The Fundamental Group of a Covering Space

5.Lifting of Arbitrary Maps to a Covering Space

6.Homomorphisms and Automorphisms of Covering Spaces

10.The Existence Theorem for Covering Spaces References

CHAPTER Ⅵ

Background and Motivation for Homology Theory

1.Introduction

2.Summary of Some of the Basic Properties of Homology Theory

3.Some Examples of Problems which Motivated the Development of Homology Theory in the Nineteenth Century References

CHAPTER Ⅶ

Definitions and Basic Properties of Homology Theory

1.Introduction

2.Definition of Cubical Singular Homology Groups

3.The Homomorphism Induced by a Continuous Map

4.The Homotopy Property of the Induced Homomorphisms

5.The Exact Homology Sequence of a Pair

6.The Main Properties of Relative Homology Groups

7.The Subdivision of Singular Cubes and the Proof of Theorem 6.4

CHAPTER Ⅷ

Determination of the Homology Groups of Certain Spaces:

Applications and Further Properties of Homology Theory

1.Introduction

2.Homology Groups of Cells and Spheres——Applications

3.Homology of Finite Graphs

4.Homology of Compact Surfaces

5.The Mayer-Vietoris Exact Sequence

6.The Jordan-Brouwer Separation Theorem and lnvariance of Domain

7.The Relation between the Fundamental Group and the First Homology Group

References

CHAPTER Ⅸ

Homology of CW-Complexes

1.Introduction

2.Adjoining Cells to a Space

3.CW-Complexes

4.The Homology Groups of a CW-Complex

5.Incidence Numbers and Orientations of Cells

6.Regular CW-Complexes

7.Determination of Incidence Numbers for a Regular Cell Complex

8.Homology Groups of a Pseudomanifold References

CHAPTER Ⅹ

Homology with Arbitrary Coefficient Groups

1.Introduction

2.Chain Complexes

3.Definition and Basic Properties of Homology with Arbitrary Coefficients

4.Intuitive Geometric Picture of a Cycle with Coefficients in G

5.Coefficient Homomorphisms and Coefficient Exact Sequences

6.The Universal Coefficient Theorem

7.Further Properties of Homology with Arbitrary Coefficients References

CHAPTER Ⅺ

The Homology of Product Spaces

1.Introduction

2.The Product of CW-Complexes and the Tensor Product of Chain Complexes

3.The Singular Chain Complex of a Product Space

4.The Homology of the Tensor Product of Chain Complexes (The Kiinneth Theorem)

5.Proof of the Eilenberg-Zilber Theorem

6.Formulas for the Homology Groups of Product Spaces References

CHAPTER Ⅻ

Cohomology Theory

CHAPTER ⅩⅢ

Products in Homology and Cohomology

CHAPTER ⅩⅣ

Duality Theorems for the Homology of Manifolds

CHAPTER ⅩⅤ

Cup Products in Projective Spaces and Applications of Cup Products

APPENDIX A

A Proof of De Rham's Theorem

APPENDIX B

Permutation Groups or Transformation Groups

Index

标签
缩略图
书名 代数拓扑基础教程
副书名
原作名
作者 (美)曼斯
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510004803
开本 24开
页数 428
版次 1
装订 平装
字数
出版时间 2009-08-01
首版时间 2009-08-01
印刷时间 2009-08-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.554
CIP核字
中图分类号 O189.2
丛书名
印张 19
印次 1
出版地 北京
225
150
17
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2009-0189
版权提供者 Springer-Verlag New York Inc
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/9 18:36:42