首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 数学物理的几何方法
内容
编辑推荐

This book alms to introduce the beginning or working physicist to awide range of aualytic tools which have their or/gin in differential geometry andwhich have recently found increasing use in theoretical physics. It is not uncom-mon today for a physicist's mathematical education to ignore all but the sim-plest geometrical ideas, despite the fact that young physicists are encouraged todevelop mental 'pictures' and 'intuition' appropriate to physical phenomena.This curious neglect of 'pictures' of one's mathematical tools may be seen as the outcome of a gradual evolution over many centuries. Geometry was certainly extremely important to ancient and medieval natural philosophers; it was ingeometrical terms that Ptolemy, Copernicus, Kepler, and Galileo all expressedtheir thinking. But when Descartes introduced coordinates into Euclideangeometry, he showed that the study of geometry could be regarded as an appli.cation of algrebra.

目录

1 Some basic mathematics

 1.1 The space Rn and its topology

 1.2 Mappings

 1.3 Real analysis

 1.4 Group theory

 1.5 Linear algebra

 1.6 The algebra of square matrices

 1.7 Bibliography

2 Dffferentiable manifolds and tensors

 2.1 Def'mition of a manifold

 2.2 The sphere as a manifold

 2.3 Other examples of manifolds

 2.4 Global considerations

 2.5 Curves

 2.6 Functions on M

 2.7 Vectors and vector fields

 2.8 Basis vectors and basis vector fields

 2.9 Fiber bundles

 2.10 Examples of fiber bundles

 2.11 A deeper look at fiber bundles

 2.12 Vector fields and integral curves

 2.13 Exponentiation of the operator d/dZ

 2.14 Lie brackets and noncoordinate bases

 2.15 When is a basis a coordinate basis?

 2.16 One-forms

 2.17 Examples of one-forms

 2.18 The Dirac delta function

 2.19 The gradient and the pictorial representation of a one-form

 2.20 Basis one-forms and components of one-forms

 2.21 Index notation

 2.22 Tensors and tensor fields

 2.23 Examples of tensors

 2.24 Components of tensors and the outer product

 2.25 Contraction

 2.26 Basis transformations

 2.27 Tensor operations on components

 2.28 Functions and scalars

 2.29 The metric tensor on a vector space

 2.30 The metric tensor field on a manifold

 2.31 Special relativity

 2.32 Bibliography

3 Lie derivatives and Lie groups

 3.1 Introduction: how a vector field maps a manifold into itself

 3.2 Lie dragging a function

 3.3 Lie dragging a vector field

 3.4 Lie derivatives

 3.5 Lie derivative of a one-form

 3.6 Submanifolds

 3.7 Frobenius' theorem (vector field version)

 3.8 Proof of Frobenius' theorem

 3.9 An example: the generators ors2

 3.10 Invariance

 3.11 Killing vector fields

 3.12 Killing vectors and conserved quantities in particle dynamics

 3.13 Axial symmetry

 3.14 Abstract Lie groups

 3.15 Examples of Lie groups

 3.16 Lie algebras and their groups

 3.17 Realizations and representatidns

 3.18 Spherical symmetry, spherical harmonics and representations of the rotation group

 3.19 Bibliography

4 Differential forms A The algebra and integral calculus of forms

 4.1 Definition of volume - the geometrical role of differential forms

 4.2 Notation and definitions for antisymmetric tensors

 4.3 Differential forms

 4.4 Manipulating differential forms

 4.5 Restriction of forms

 4.6 Fields of forms

 4.7 Handedness and orientability

 4.8 Volumes and integration on oriented manifolds

 4.9 N-vectors, duals, and the symbol

 4.10 Tensor densities

 4.11 Generalized Kronecker deltas

 4.12 Determinants and

 4.13 Metric volume elements B The differential calculus of forms and its applications

 4.14 The exterior derivative

 4.15 Notation for derivatives

 4.16 Familiar examples of exterior differentiation

 4.17 Integrability conditions for partial differential equations

 4.18 Exact forms

 4.19 Proof of the local exactness of closed forms

 4.20 Lie derivatives of forms

 4.21 Lie derivatives and exterior derivatives commute

 4.22 Stokes' theorem

 4.23 Gauss' theorem and the definition of divergence

 4.24 A glance at cohomology theory

 4.25 Differential forms and differential equations

 4.26 Frobenins' theorem (differential forms version)

 4.27 Proof of the equivalence of the two versions of Frobenius theorem

 4.28 Conservation laws

 4.29 Vector spherical harmonics

 4.30 Bibliography

5 Applications in physics A Thermodynamics

 5.1 Simple systems

 5.2 Maxwell and other mathematical identities

 5.3 Composite thermodynamic systems: Caratheodory's theorem B Hamilton/an mechanics

 5.4 Hamiltodian vector fields

 5.5 Canonical transformations

 5.6 Map between vectors and one-forms provided by

 5.7 Poisson bracket

 5.8 Many-particle systems: symplectic forms

 5.9 Linear dynamical systems: the symplectic inner product and conserved quantities

 5.10 Fiber bundle structure of the Hamiltonian equations C Electromagnetism

 5.11Rewriting Maxwell's equations using differential forms

 5.12 Charge and topology

 5.13 The vector potential

 5.14 Plane waves: a simple example D Dynamics of a perfect fluid

 5.15 Role of Lie derivatives

 5.16 The comoving time-derivative

 5.17 Equation of motion

 5.18 Conservation of vorticity

 E Cosmology

 5.19 The cosmological principle

 5.20 Lie algebra of maximal symmetry

 5.21 The metric of a spherically symmetric three-space

 5.22 Construction of the six Killing vectors

 5.23 Open, closed, and flat universes

 5.24 Bibliography

6 Connections for Riemnnnian manifolds and gauge theories

 6.1 Introduction

 6.2 Parallelism on curved surfaces

 6.3 The covariant derivative

 6.4 Components: covariant derivatives of the basis

 6.5 Torsion

 6.6 Geodesics

 6.7 Normal coordinates

 6.8 Riemann tensor

 6.9 Geometric interpretation of the Riemann tensor

 6.10 Flat spaces

 6.11 Compatibility of the connection with volume-measure or the metric

 6.12 Metric connections

 6.13 The affine connection and the equivalence principle

 6.14 Connections and gauge theories: the example of electromagnetism

 6.15 Bibfiography

Appendix: solutions and hints for selected exercises

Notation

Index

标签
缩略图
书名 数学物理的几何方法
副书名
原作名
作者 (英)舒茨
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510004513
开本 24开
页数 250
版次 1
装订 平装
字数
出版时间 2009-06-01
首版时间 2009-06-01
印刷时间 2009-06-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-物理
图书小类
重量 0.334
CIP核字
中图分类号 O411.1
丛书名
印张 11
印次 1
出版地 北京
225
150
11
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2009-1661
版权提供者 Cambridge University Press
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/6 2:27:18