Starting with Bargmann's paPer on the tnhmte dimenslonal representattons of SL2(R),the theory of representations of semisimple Lie groups has evolved toa rather extensive production.
| 图书 | SL2(R) |
| 内容 | 编辑推荐 Starting with Bargmann's paPer on the tnhmte dimenslonal representattons of SL2(R),the theory of representations of semisimple Lie groups has evolved toa rather extensive production. 目录 Notation Chapter Ⅰ General Results 1 The representation on Cv(G) 2 A criterion for complete reducibility 3 L2 kernels and operators 4 Plancherel measures Chapter Ⅱ Compact Groups 1 Decomposition over K for SL2(R) 2 Compact groups in general Chapter Ⅲ Induced Representations 1 Integration on coset spaces 2 Induced representations 3 Associated spherical functions 4 The kernel defining the induced representation Chapter Ⅳ Spherical Functions 1 Bi-invariance 2 Irreducibility 3 The spherical property 4 Connection with unitary representations 5 Positive definite functions Chapter Ⅴ The Spherical Transform 1 Integral formulas 2 The Harish transform 3 The Mellin transform 4 The spherical transform 5 Explicit formulas and asymptotic expansions Chapter Ⅵ The Derived Representation on the Lie Algebra 1 The derived representation 2 The derived representation decomposed over K 3 Unitarization of a representation 4 The Lie derivatives on G 5 Irreducible components of the induced representations 6 Classification of all unitary irreducible representations 7 Separation by the trace Chapter Ⅶ Traces 1 Operators of trace class 2 Integral formulas 3 The trace in the induced representation 4 The trace in the discrete series 5 Relation between the Harish transforms on A and K Appendix. General facts about traces Chapter Ⅷ The Planeherel Formula 1 Calculus lemma 2 The Harish transforms discontinuities 3 Some iemmas 4 The Plancherel formula Chapter Ⅸ Discrete Series 1 Discrete series in L2(G) 2 Representation in the upper half plane 3 Representation on the disc 4 The lifting of weight m 5 The holomorphic property Chapter Ⅹ Partial Differential Operators 1 The universal enveloping algebra 2 Analytic vectors 3 Eiaenfunctions of Z (f) Chapter Ⅺ The Well Representation 1 Some convolutions 2 Generators and relations for SL2 3 The Well representation Chapter Ⅻ Representation on OL2(Г\\G) 1 Cusps on the group 2 Cusp forms 3 A criterion for compact operators 4 Complete reducibility of OL2Г\\G) Chapter ⅩⅢ The Continuous Part of L2(Г\\G) 1 An orthogonality relation 2 The Eisenstein series 3 Analytic continuation and functional equation 4 Mellin and zeta transforms 5 Some group theoretic lemmas 6 An expression for TOTφ 7 Analytic continuation of the zeta transform of TOTφ 8 The spectral decomposition Chapter ⅩⅣ Spectral Decomposition of the Laplace Operator on Г\\■ 1 Geometry and differential operators on ■ 2 A solution of ιφ≠s(ι-s)φ 3 The resoivant of the Laplace operator on ■ for σ>I 4 Symmetry of the Laplace operator on Г\\■ 5 The Laplace operator on Г\\■ 6 Green's functions and the Whittaker equation 7 Decomposition of the resolvant on Г\\■ for o>3/2 8 The equation - ψ″(y)=s(ι-s)/y2ψ(y) on [α, ∞) 9 Eigenfunctions of the Laplace, an in L2(Г\\■)=H 10 The resolvant equations for 0 <α<2 11 The kernel of the resolvant for 0 <α< 2 12 The Eisenstein operator and Eisenstein functions 13 The continuous part of the spectrum 14 Several cusps Appendix 1 Bounded Hermitian Operators and Schur's Lemma 1 Continuous functions of operators 2 Projection functions of operators Appendix 2 Unbounded Operators 1 Self-adjoint operators 2 The spectral measure 3 The resolvant formula Appendix 3 Meromorphic Families of Operators 1 Compact operators 2 Bounded operators Appendix 4 Elliptic PDE 1 Sobolev spaces 2 Ordinary estimates 3 Elliptic estimates 4 Compactness and regularity on the torus 5 Regularity in Euclidean space Appendix 5 Weak and Strong Analyticity 1 Complex theorem 2 Real theorem Bibliography Symbols Frequently Used Index |
| 标签 | |
| 缩略图 | ![]() |
| 书名 | SL2(R) |
| 副书名 | |
| 原作名 | |
| 作者 | (美)莱恩 |
| 译者 | |
| 编者 | |
| 绘者 | |
| 出版社 | 世界图书出版公司 |
| 商品编码(ISBN) | 9787510004544 |
| 开本 | 24开 |
| 页数 | 428 |
| 版次 | 1 |
| 装订 | 平装 |
| 字数 | |
| 出版时间 | 2009-08-01 |
| 首版时间 | 2009-08-01 |
| 印刷时间 | 2009-08-01 |
| 正文语种 | 英 |
| 读者对象 | 普通成人 |
| 适用范围 | |
| 发行范围 | 公开发行 |
| 发行模式 | 实体书 |
| 首发网站 | |
| 连载网址 | |
| 图书大类 | 科学技术-自然科学-数学 |
| 图书小类 | |
| 重量 | 0.556 |
| CIP核字 | |
| 中图分类号 | O15 |
| 丛书名 | |
| 印张 | 19 |
| 印次 | 1 |
| 出版地 | 北京 |
| 长 | 225 |
| 宽 | 150 |
| 高 | 18 |
| 整理 | |
| 媒质 | 图书 |
| 用纸 | 普通纸 |
| 是否注音 | 否 |
| 影印版本 | 原版 |
| 出版商国别 | CN |
| 是否套装 | 单册 |
| 著作权合同登记号 | |
| 版权提供者 | |
| 定价 | |
| 印数 | |
| 出品方 | |
| 作品荣誉 | |
| 主角 | |
| 配角 | |
| 其他角色 | |
| 一句话简介 | |
| 立意 | |
| 作品视角 | |
| 所属系列 | |
| 文章进度 | |
| 内容简介 | |
| 作者简介 | |
| 目录 | |
| 文摘 | |
| 安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
| 随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。