首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 套利数学
内容
编辑推荐

这本《套利数学》由瑞士的Freddy Delbaen和Walter Schachemayer所著,内容是:The present book therefore is organised as follows. Part Ⅰ contains the"guided tour" which is divided into eight chapters. In Part Ⅱ we reproduce updated versions of the following papers. We havecorrected a number of typographical errors and two mathematical inaccuracies(indicated by footnotes) pointed out to us over the past years by severalcolleagues.

目录

Part Ⅰ A Guided Tour to Arbitrage Theory

 1 The Story in a Nutshell

1.1 Arbitrage

1.2 An Easy Model of a Financial Market

1.3 Pricing by No-Arbitrage

1.4 Variations of the Example

1.5 Martingale Measures

1.6 The Fundamental Theorem of Asset Pricing

 2 Models of Financial Markets on Finite Probability Spaces

2.1 Description of the Model

2.2 No-Arbitrage and the Fundamental Theorem of Asset Pricing

2.3 Equivalence of Single-period with Multiperiod Arbitrage

2.4 Pricing by No-Arbitrage

2.5 Change of Numeraire

2.6 Kramkov's Optional Decomposition Theorem

 3 Utility Maximisation on Finite Probability Spaces

3.1 The Complete Case

3.2 The Incomplete Case

3.3 The Binomial and the Trinomial Model

 4 Bachelier and Black-Scholes

4.1 Introduction to Continuous Time Models

4.2 Models in Continuous Time

4.3 Bachelier's Model

4.4 The Black-Scholes Model

 5 The Kreps-Yan Theorem

5.1 A General Framework

5.2 No Free Lunch

 6 The Dalang-Morton-Willinger Theorem

6.1 Statement of the Theorem

6.2 The Predictable Range

6.3 The Selection Principle

6.4 The Closedness of the Cone C

6.5 Proof of the Dalang-Morton-Willinger Theorem for T=1

6.6 A Utility-based Proof of the DMW Theorem for T=1

6.7 Proof of the Dalang-Morton-Willinger Theorem for T>1 by Induction on T

6.8 Proof of the Closedness of K in the Case T≥1

6.9 Proof of the Closedness of C in the Case T≥1 under the (NA) Condition

6.10 Proof of the Dalang-Morton-Willinger Theorem for T≥1 using the Closedness of C

6.11 Interpretation of the L∞-Bound in the DMW Theorem

 7 A Primer in Stochastic Integration

7.1 The Set-up

7.2 Introductory on Stochastic Processes

7.3 Strategies, Semi-martingales and Stochastic Integration

 8 Arbitrage Theory in Continuous Time: an Overview

8.1 Notation and Preliminaries

8.2 The Crucial Lemma

8.3 Sigma-martingales and the Non-locally Bounded Case

Part Ⅱ The Original Papers

 9 A General Version of the Fundamental Theorem of Asset Pricing (1994)

9.1 Introduction

9.2 Definitions and Preliminary Results

9.3 No Free Lunch with Vanishing Risk

9.4 Proof of the Main Theorem

9.5 The Set of Representing Measures

9.6 No Free Lunch with Bounded Risk

9.7 Simple Integrands

9.8 Appendix: Some Measure Theoretical Lemmas

 10 A Simple Counter-Example to Several Problems in the Theory of Asset Pricing (1998)

10.1 Introduction and Known Results'.

10.2 Construction of the Example

10.3 Incomplete Markets

 11 The No-Arbitrage Property under a Change of Numeraire (1995)

11.1 Introduction

11.2 Basic Theorems

11.3 Duality Relation

11.4 Hedging and Change of Numeraire

 12 The Existence of Absolutely Continuous Local Martingale Measures (1995)

12.1 Introduction

12.2 The Predictable Radon-Nikodym Derivative

12.3 The No-Arbitrage Property and Immediate Arbitrage

12.4 The Existence of an Absolutely Continuous Local Martingale Measure

 13 The Banach Space of Workable Contingent Claims in Arbitrage Theory (1997)

13.1 Introduction

13.2 Maximal Admissible Contingent Claims by Maximal Contingent Claims

13.4 Some Results on the Topology of G

13.5 The Value of Maximal Admissible Contingent Claims on the Set Me

13.6 The Space G under a Numeraire Change

13.7 The Closure of G∞ and Related Problems

 14 The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes (1998)

14.1 Introduction

14.2 Sigma-martingales

14.3 One-period Processes

14.4 The General Rd-valued Case

14.5 Duality Results and Maximal Elements

 15 A Compactness Principle for Bounded Sequences of Martingales with Applications (1999)

15.1 Introduction

15.2 Notations and Preliminaries

15.3 An Example

15.4 A Substitute of Compactness

  for Bounded Subsets of H1

  15.4.1 Proof of Theorem 15.A

  15.4.2 Proof of Theorem 15.C

  15.4.3 Proof of Theorem 15.B

  15.4.4 A proof of M. Yor's Theorem

  15.4.5 Proof of Theorem 15.D

15.5 Application

Part Ⅲ Bibliography

References

标签
缩略图
书名 套利数学
副书名
原作名
作者 (瑞士)戴尔贝恩
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510027376
开本 24开
页数 373
版次 1
装订 平装
字数
出版时间 2010-09-01
首版时间 2010-09-01
印刷时间 2010-09-01
正文语种
读者对象 研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 人文社科-法律-法律法规
图书小类
重量 0.468
CIP核字
中图分类号 F224.0
丛书名
印张 16.5
印次 1
出版地 北京
224
148
16
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2010-1605
版权提供者 Springer-Verlag (Berlin/Heidelberg/New York)
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/8 23:04:28