“天元基金影印数学丛书”主要包含国外反映近代数学发展的纯数学与应用数学方面的优秀书籍,天元基金邀请国内各个方向的知名数学家参与选题的工作,经专家遴选、推荐,由高等教育出版社影印出版。
本书第一卷的内容包括集合与函数、离散变量的收敛性、连续变量的收敛性、幂函数、指数函数与三角函数;第二卷的内容包括Fourier级数和Fourier积分以及可以通过Fourier级数解释的Weierstrass的解析函数理论。
本书可作为高年级本科生教材或参考书。
图书 | 分析(Ⅱ影印版)/天元基金影印数学丛书 |
内容 | 编辑推荐 “天元基金影印数学丛书”主要包含国外反映近代数学发展的纯数学与应用数学方面的优秀书籍,天元基金邀请国内各个方向的知名数学家参与选题的工作,经专家遴选、推荐,由高等教育出版社影印出版。 本书第一卷的内容包括集合与函数、离散变量的收敛性、连续变量的收敛性、幂函数、指数函数与三角函数;第二卷的内容包括Fourier级数和Fourier积分以及可以通过Fourier级数解释的Weierstrass的解析函数理论。 本书可作为高年级本科生教材或参考书。 内容推荐 本书是作者在巴黎第七大学讲授分析课程数十年的结晶,其目的是阐明分析是什么,它是如何发展的。本书非常巧妙地将严格的数学与教学实际、历史背景结合在一起,对主要结论常常给出各种可能的探索途径,以使读者理解基本概念、方法和推演过程了作者在本书中较早地引入了一些较深的内容,如在第一卷中介绍了拓扑空间的概念,在第二卷中介绍了Lebesgue理论的基本定理和Weierstrass椭圆函数的构造。 本书第一卷的内容包括集合与函数、离散变量的收敛性、连续变量的收敛性、幂函数、指数函数与三角函数;第二卷的内容包括Fourier级数和Fourier积分以及可以通过Fourier级数解释的Weierstrass的解析函数理论。 目录 V - Differential and Integral Calculus 1. The Riemann Integral 1 - Upper and lower integrals of a bounded function 2 - Elementary properties of integrals 3 - Riemann sums. The integral notation 4 - Uniform limits of integrable functions 5 - Application to Fourier series and to power series 2. Integrability Conditions 6 - The Borel-Lebesgue Theorem 7 - Integrability of regulated or continuous functions 8 - Uniform continuity and its consequences 9 - Differentiation and integration under the f sign 10 - Semicontinuous functions 11 - Integration of semicontinuous functions 3. The "Fundamental Theorem" (FT) 12 - The fundamental theorem of the differential and integral calculus 13 - Extension of the fundamental theorem to regulated functions 14 - Convex functions; Holder and Minkowski inequalities 4. Integration by parts 15 - Integration by parts 16 - The square wave Fourier series 17- Wallis' formula 5. Taylor's Formula 18 - Taylor's Formula 6. The change of variable formula 19 - Change of variable in an integral 20 - Integration of rational fractions 7. Generalised Riemann integrals 21 - Convergent integrals: examples and definitions 22 - Absolutely convergent integrals 23 - Passage to the limit under the f sign 24 - Series and integrals 25 - Differentiation under the f sign 26 - Integration under the f sign 8. Approximation Theorems 27 - How to make C a function which is not 28 - Approximation by polynomials 29 - Functions having given derivatives at a point 9. Radon measures in R or C 30 - Radon measures on a compact set 31 - Measures on a locally compact set 32 - The Stieltjes construction 33 - Application to double integrals 10. Schwartz distributions 34 - Definition and examples 35 - Derivatives of a distribution Appendix to Chapter V - Introduction to the Lebesgue Theory VI - Asymptotic Analysis 1. Truncated expansions 1 - Comparison relations 2 - Rules of calculation 3 - Truncated expansions 4 - Truncated expansion of a quotient 5 - Gauss' convergence criterion 6 - The hypergeometric series 7 - Asymptotic study of the equation xex = t 8 - Asymptotics of the roots of sin x log x = 1 9 - Kepler's equation 10 - Asymptotics of the Bessel functions 2. Summation formulae 11 - Cavalieri and the sums 1k + 2k + ... + nk 12 - Jakob Bernoulli 13 - The power series for cot z 14 - Euler and the power series for arctan x 15 - Euler, Maclaurin and their summation formula 16 - The Euler-Maclaurin formula with remainder 17 - Calculating an integral by the trapezoidal rule 18 - The sum 1 + 1/2 ... + l/n, the infinite product for the F function, and Stirling's formula 19 - Analytic continuation of the zeta function VII - Harmonic Analysis and Holomcrphic Functions 1 - Cauchy's integral formula for a circle 1. Analysis on the unit circle 2 - Functions and measures on the unit circle 3 - Fourier coefficients 4 - Convolution product on 5 - Dirac sequences in T 2. Elementary theorems on Fourier series 6 - Absolutely convergent Fourier series 7 - Hilbertian calculations 8 - The Parseval-Bessel equality 9 - Fourier series of differentiable functions 10 - Distributions on 3. Dirichlet's method 11 - Dirichlet's theorem 12 - Fejer's theorem 13 - Uniformly convergent Fourier series 4. Analytic and holomorphic functions 14 - Analyticity of the holomorphic functions 15 - The maximum principle 16 - Functions analytic in an annulus. Singular points. Meromorphic functions 17 - Periodic holomorphic functions 18 - The theorems of Liouville and d'Alembert-Gauss 19 - Limits of holomorphic functions 20 - Infinite products of holomorphic functions 5. Harmonic functions and Fourier series 21 - Analytic functions defined by a Cauchy integral 22 - Poisson's function 23 - Applications to Fourier series 24 - Harmonic functions 25 - Limits of harmonic functions 26 - The Dirichlet problem for a disc 6. From Fourier series to integrals 27 - The Poisson summation formula 28 - Jacobi's theta function 29 - Fundamental formulae for the Fourier transform 30 - Extensions of the inversion formula 31 - The Fourier transform and differentiation 32 - Tempered distributions Postface. Science, technology, arms Index Table of Contents of Volume I |
标签 | |
缩略图 | ![]() |
书名 | 分析(Ⅱ影印版)/天元基金影印数学丛书 |
副书名 | |
原作名 | |
作者 | (法)戈德门特 |
译者 | |
编者 | |
绘者 | |
出版社 | 高等教育出版社 |
商品编码(ISBN) | 9787040279542 |
开本 | 16开 |
页数 | 443 |
版次 | 1 |
装订 | 平装 |
字数 | 480 |
出版时间 | 2009-12-01 |
首版时间 | 2009-12-01 |
印刷时间 | 2009-12-01 |
正文语种 | 英 |
读者对象 | 青年(14-20岁),普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.544 |
CIP核字 | |
中图分类号 | O17 |
丛书名 | |
印张 | 28.25 |
印次 | 1 |
出版地 | 北京 |
长 | 228 |
宽 | 169 |
高 | 18 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | 图字01-2009-3381号 |
版权提供者 | Springer-Verlag |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。