首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 Hadoop技术内幕(深入解析MapReduce架构设计与实现原理)/大数据技术丛书
内容
编辑推荐

董西成所著的《Hadoop技术内幕(深入解析MapReduce架构设计与实现原理)》以当前稳定的Hadoop1.0版本为基础,结合源代码深入解析了HadoopMapReduce的设计原理、架构以及可行的改进方案,覆盖作业、任务、通信和调度等重要概念和实现。本书面向Hadoop研发人员和Hadoop高级用户,内容全面、翔实、深刻,是一本不可多得的Hadoop工具书。

内容推荐

“Hadoop技术内幕”共两册,分别从源代码的角度对“Common+HDFS”和“MapReduce的架构设计和实现原理”进行了极为详细的分析。本书由Hadoop领域资深的实践者亲自执笔,首先介绍了MapReduce的设计理念和编程模型,然后从源代码的角度深入分析了RPC框架、客户端、JobTracker、TaskTracker和Task等MapReduce运行时环境的架构设计与实现原理,最后从实际应用的角度深入讲解了Hadoop的性能优化、安全机制、多用户作业调度器和下一代MapReduce框架等高级主题和内容。《Hadoop技术内幕(深入解析MapReduce架构设计与实现原理)》适合Hadoop的二次开发人员、应用开发工程师、运维工程师阅读。

董西成所著的《Hadoop技术内幕(深入解析MapReduce架构设计与实现原理)》共12章,分4个部分(不包括附录):第一部分(第1~2章),介绍了Hadoop源代码的组织结构、获取、编译、调试、阅读环境搭建,以及MapReduce的设计理念和基本架构;第二部分(第3章),着重讲解了MapReduce的编程接口,主要包括旧API和新API两套编程接口,以及Hadoop工作流;第三部分(第4~8章)主要分析了MapReduce的运行时环境,包括RPC框架、客户端、JobTracker、TaskTracker和Task等的内部实现细节和机制剖析;第四部分(第9~12章)深入讲解了Hadoop的性能优化、多用户作业调度器、安全机制和下一代MapReduce框架等高级主题。

目录

前言

第一部分 基础篇

第1章 阅读源代码前的准备

 1.1 准备源代码学习环境

1.1.1 基础软件下载

1.1.2 如何准备Windows环境

1.1.3 如何准备Linux环境

 1.2 获取Hadoop源代码

 1.3 搭建Hadoop源代码阅读环境

1.3.1 创建Hadoop工程

1.3.2 Hadoop源代码阅读技巧

 1.4 Hadoop源代码组织结构

 1.5 Hadoop初体验

1.5.1 启动Hadoop

1.5.2 Hadoop Shell介绍

1.5.3 Hadoop Eclipse插件介绍

 1.6 编译及调试Hadoop源代码

1.6.1 编译Hadoop源代码

1.6.2 调试Hadoop源代码

 1.7 小结

第2章 MapReduce设计理念与基本架构

 2.1 Hadoop发展史

2.1.1 Hadoop产生背景

2.1.2 Apache Hadoop新版本的特性

2.1.3 Hadoop版本变迁

 2.2 Hadoop MapReduce设计目标

 2.3 MapReduce编程模型概述

2.3.1 MapReduce编程模型简介

2.3.2 MapReduce编程实例

 2.4 Hadoop基本架构

2.4.1 HDFS架构

2.4.2 Hadoop MapReduce架构

 2.5 Hadoop MapReduce作业的生命周期

 2.6 小结

第二部分 MapReduce编程模型篇

第3章 MapReduce编程模型

 3.1 MapReduce编程模型概述

3.1.1 MapReduce编程接口体系结构

3.1.2 新旧MapReduce API比较

 3.2 MapReduce API基本概念

3.2.1 序列化

3.2.2 Reporter参数

3.2.3 回调机制

 3.3 Java API解析

3.3.1 作业配置与提交

3.3.2 InputFormat接口的设计与实现

3.3.3 OutputFormat接口的设计与实现

3.3.4 Mapper与Reducer解析

3.3.5 Partitioner接口的设计与实现

 3.4 非Java API解析

3.4.1 Hadoop Streaming的实现原理

3.4.2 Hadoop Pipes的实现原理

 3.5 Hadoop工作流

3.5.1 JobControl的实现原理

3.5.2 ChainMapper/ChainReducer的实现原理

3.5.3 Hadoop工作流引擎

 3.6 小结

第三部分 MapReduce核心设计篇

第4章 Hadoop RPC框架解析

 4.1 Hadoop RPC框架概述

 4.2 Java基础知识

4.2.1 Java反射机制与动态代理

4.2.2 Java网络编程

4.2.3 Java NIO

 4.3 Hadoop RPC基本框架分析

4.3.1 RPC基本概念

4.3.2 Hadoop RPC基本框架

4.3.3 集成其他开源RPC框架

 4.4 MapReduce通信协议分析

4.4.1 MapReduce 通信协议概述

4.4.2 JobSubmissionProtocol通信协议

4.4.3 InterTrackerProtocol通信协议

4.4.4 TaskUmbilicalProtocol通信协议

4.4.5 其他通信协议

 4.5 小结

第5章 作业提交与初始化过程分析

 5.1 作业提交与初始化概述

 5.2 作业提交过程详解

5.2.1 执行Shell命令

5.2.2 作业文件上传

5.2.3 产生InputSplit文件

5.2.4 作业提交到JobTracker

 5.3 作业初始化过程详解

 5.4 Hadoop DistributedCache原理分析

5.4.1 使用方法介绍

5.4.2 工作原理分析

 5.5 小结

第6章 JobTracker内部实现剖析

 6.1 JobTracker概述

 6.2 JobTracker启动过程分析

6.2.1 JobTracker启动过程概述

6.2.2 重要对象初始化

6.2.3 各种线程功能

6.2.4 作业恢复

 6.3 心跳接收与应答

6.3.1 更新状态

6.3.2 下达命令

 6.4 Job和Task运行时信息维护

6.4.1 作业描述模型

6.4.2 JobInProgress

6.4.3 TaskInProgress

6.4.4 作业和任务状态转换图

 6.5 容错机制

6.5.1 JobTracker容错

6.5.2 TaskTracker容错

6.5.3 Job/Task容错

6.5.4 Record容错

6.5.5 磁盘容错

 6.6 任务推测执行原理

6.6.1 计算模型假设

6.6.2 1.0.0版本的算法

6.6.3 0.21.0版本的算法

6.6.4 2.0版本的算法

 6.7 Hadoop资源管理

6.7.1 任务调度框架分析

6.7.2 任务选择策略分析

6.7.3 FIFO调度器分析

6.7.4 Hadoop资源管理优化

 6.8 小结

第7章 TaskTracker内部实现剖析

 7.1 TaskTracker概述

 7.2 TaskTracker启动过程分析

7.2.1 重要变量初始化

7.2.2 重要对象初始化

7.2.3 连接JobTracker

 7.3 心跳机制

7.3.1 单次心跳发送

7.3.2 状态发送

7.3.3 命令执行

 7.4 TaskTracker行为分析

7.4.1 启动新任务

7.4.2 提交任务

7.4.3 杀死任务

7.4.4 杀死作业

7.4.5 重新初始化

 7.5 作业目录管理

 7.6 启动新任务

7.6.1 任务启动过程分析

7.6.2 资源隔离机制

 7.7 小结

第8章 Task运行过程分析

 8.1 Task运行过程概述

 8.2 基本数据结构和算法

8.2.1 IFile存储格式

8.2.2 排序

8.2.3 Reporter

 8.3 Map Task内部实现

8.3.1 Map Task整体流程

8.3.2 Collect过程分析

8.3.3 Spill过程分析

8.3.4 Combine过程分析

 8.4 Reduce Task内部实现

8.4.1 Reduce Task整体流程

8.4.2 Shuffle和Merge阶段分析

8.4.3 Sort和Reduce阶段分析

 8.5 Map/Reduce Task优化

8.5.1 参数调优

8.5.2 系统优化

 8.6 小结

第四部分 MapReduce高级篇

第9章 Hadoop性能调优

 9.1 概述

 9.2 从管理员角度进行调优

9.2.1 硬件选择

9.2.2 操作系统参数调优

9.2.3 JVM参数调优

9.2.4 Hadoop参数调优

 9.3 从用户角度进行调优

9.3.1 应用程序编写规范

9.3.2 作业级别参数调优

9.3.3 任务级别参数调优

 9.4 小结

第10章 Hadoop多用户作业调度器

 10.1 多用户调度器产生背景

 10.2 HOD

10.2.1 Torque资源管理器

10.2.2 HOD作业调度

 10.3 Hadoop队列管理机制

 10.4 Capacity Scheduler实现

10.4.1 Capacity Scheduler功能介绍

10.4.2 Capacity Scheduler实现

10.4.3 多层队列调度

 10.5 Fair Scheduler实现

 10.5.1 Fair Scheduler功能介绍

10.5.2 Fair Scheduler实现

10.5.3 Fair Scheduler与Capacity Scheduler对比

 10.6 其他Hadoop调度器介绍

 10.7 小结

第11章 Hadoop安全机制

 11.1 Hadoop安全机制概述

11.1.1 Hadoop面临的安全问题

11.1.2 Hadoop对安全方面的需求

11.1.3 Hadoop安全设计基本原则

 11.2 基础知识

11.2.1 安全认证机制

11.2.2 Kerberos介绍

 11.3 Hadoop安全机制实现

11.3.1 RPC

11.3.2 HDFS

11.3.3 MapReduce

11.3.4 上层服务

 11.4 应用场景总结

11.4.1 文件存取

11.4.2 作业提交与运行

11.4.3 上层中间件访问Hadoop

 11.5 小结

第12章 下一代MapReduce框架

 12.1第一代MapReduce框架的局限性

 12.2 下一代MapReduce框架概述

12.2.1 基本设计思想

12.2.2 资源统一管理平台

 12.3 Apache YARN

12.3.1 Apache YARN基本框架

12.3.2 Apache YARN工作流程

12.3.3 Apache YARN设计细节

12.3.4 MapReduce与YARN结合

 12.4 Facebook Corona

12.4.1 Facebook Corona基本框架

12.4.2 Facebook Corona工作流程

12.4.3 YARN与Corona对比

 12.5 Apache Mesos

12.5.1 Apache Mesos基本框架

12.5.2 Apache Mesos资源分配

12.5.3 MapReduce与Mesos结合

 12.6 小结

附录A 安装Hadoop过程中可能存在的问题及解决方案

附录B Hadoop默认HTTP端口号以及HTTP地址

参考资料

标签
缩略图
书名 Hadoop技术内幕(深入解析MapReduce架构设计与实现原理)/大数据技术丛书
副书名
原作名
作者 董西成
译者
编者
绘者
出版社 机械工业出版社
商品编码(ISBN) 9787111422266
开本 16开
页数 318
版次 1
装订 平装
字数
出版时间 2013-05-01
首版时间 2013-05-01
印刷时间 2013-05-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 0.548
CIP核字
中图分类号 TP274
丛书名
印张 20.75
印次 1
出版地 北京
240
186
15
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/6 9:40:17