首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 微分方程群性质理论讲义(精)
内容
编辑推荐

奥夫斯亚尼科夫编著的《微分方程群性质理论讲义(精)》简介:The theory of differential equations has two aspects of investigation, namely local and global, no matter whether the equations arise from applied problems of physics and mechanics or from abstract speculations (which is rather frequent in modern mathematics). The local aspect is characterized by dealing with the inner structure of a family of solutions and its investigation in a neighborhood of a certain point. The global approach deals with solutions defined in some domain and having a given behavior on its boundary.

内容推荐

奥夫斯亚尼科夫编著的《微分方程群性质理论讲义(精)》提供了确定和利用微分方程对称性的李群方法简明和清晰的介绍,并提供了在气体动力学和其他非线性模型中的大量应用,以及《非线性物理科学:微分方程群性质理论讲义》作者在这个经典领域的卓越贡献。《微分方程群性质理论讲义(精)》中还包含在其他现代书籍中不曾涉及的一些非常有刚的材料,例如:Ovsyannikow教授发展的部分不变解理论,该理论提供了求解非线性微分方程和研究复杂数学模型强有力的工具。

目录

Editor's preface

Preface

1 One-parameter continuous transformation groups admitted by differential equations

1.1 One-parameter continuous transformation group

 1.1.1 Definition

 1.1.2 Canonical parameter

 1.1.3 Examples

 1.1.4 Auxiliary functions of groups

1.2 Infinitesimal operator of the group

 1.2.1 Definition and examples

 1.2.2 Transformation of functions

 1.2.3 Change of coordinates

1.3 Invariants and invariant manifolds

 1.3.1 Invariants

 1.3.2 Invariant manifolds

 1.3.3 Invariance of regularly defined manifolds

1.4 Theory of prolongation

 1.4.1 Prolongation of the space

 1.4.2 Prolonged group

 1.4.3 First prolongation of the group operator

 1.4.4 Second prolongation of the group operator

 1.4.5 Properties of prolongations of operators

1.5 Groups admitted by differentialequations

 1.5.1 Determining equations

 1.5.2 First-order ordinary differential equations

 1.5.3 Second-orderordinarydifferentialequations

 1.5.4 Heat equation

 1.5.5 Gasdynamic equations

1.6 Lie algebra of operators

 1.6.1 Commutator. Definition of a Lie algebra

 1.6.2 Properties of commutator

 1.6.3 Lie algebra of admitted operators

2 Lie algebras and local Lie groups

2.1 Lie algebra

 2.1.1 Definition and examples

 2.1.2 Subalgebra and ideal

 2.1.3 Structure of finite-dimensionalLie algebras

2.2 Adjoint algebra

 2.2.1 Inner derivation

 2.2.2Adjoint algebra

 2.2.3 Inner automorphisms of a Lie algebra.

2.3 Local Lie group

 2.3.1 Coordinates in a group

 2.3.2 Subgroups

 2.3.3 Canonical coordinates of the first kind

 2.3.4 First fundamental theorem of Lie

 2.3.5 Second fundamental theorem of Lie

 2.3.6 Properties ofcanonicalcoordinate systems of the first kind

 2.3.7 Third fundamental theorem of Lie

 2.3.8 Lie algebra of a local Lie group

2.4 Subgroup, normal subgroup and factor group

 2.4.1 Lemma on commutator

 2.4.2 Subgroup

 2.4.2 Subgroup

 2.4.3 Normal subgroup

 2.4.4 Factor grop

2.5 Inner automorphisms of a group and of its Lie algebra

 2.5.1 Inner automorphism.

 2.5.2 Lie algebra of GA and adjoint algebra of Lr

2.6 Local Lie group of transformations

 2.6.1 Introduction

 2.6.2 Lie's first theorem.

 2.6.3 Lie's second theorem

 2.6.4 Canonical coordinates of the second kind

3 Group invariant solutions of differential equations

3.1 Invariants of the group GNr

 3.1.1 Invariance criterion

 3.1.2 Functional independence

 3.1.3 Linearly unconnected operators

 3.1.4 Integration of jacobian systems

 3.1.5 Computation ofinvariance

3.2 Invariant manifolds

 3.2.1 Invariant manifolds criterion

 3.2.2 Induced group and its Lie algebra

 3.2.3 Theorem on representation of nonsingular invariant manifolds

 3.2.4 Differential invariant manifolds

3.3 Invariant solutions of differential equations

 3.3.1 Definition of invariant solutions

 3.3.2 The system (S/H)

 3.3.3 Examples from one-dimensional gas dynamics

 3.3.4 Self-similar solutions

3.4 Classification of invariant solutions

 3.4.1 Invariant solutions for similar subalgebras

 3.4.2 Classes of similar subalgebras

3.5 Partially invariant solutions

 3.5.1 Partially invariant manifolds

 3.5.2 Defect of invariance

 3.5.3 Construction of partially invariant solutions

3.6 Reduction of partially invariant solutions

 3.6.1 Statement of the reduction problem

 3.6.2 Two auxiliary lemmas

 3.6.3 Theorem on reduction

3.7 Some problems

标签
缩略图
书名 微分方程群性质理论讲义(精)
副书名
原作名
作者 (俄罗斯)奥夫斯亚尼科夫
译者
编者
绘者
出版社 高等教育出版社
商品编码(ISBN) 9787040369441
开本 16开
页数 141
版次 1
装订 精装
字数 210
出版时间 2013-04-01
首版时间 2013-04-01
印刷时间 2013-04-01
正文语种
读者对象 普通青少年,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.406
CIP核字
中图分类号 O175
丛书名
印张 9.75
印次 1
出版地 北京
242
162
15
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/7 4:57:30