随机控制也叫试探控制,是最原始的控制方式,是其他一切控制方式的基础。随机控制是完全建立在偶然机遇的基础上,是“试试看”思想在控制活动中的体现。随机控制在成功的同时,常常伴随着失败。这种控制方式有较大的风险,对事关重大的活动,一般不宜采用这种控制方式。
《随机控制》(作者雍炯敏)是关于介绍随机控制的英文教材。
图书 | 随机控制 |
内容 | 编辑推荐 随机控制也叫试探控制,是最原始的控制方式,是其他一切控制方式的基础。随机控制是完全建立在偶然机遇的基础上,是“试试看”思想在控制活动中的体现。随机控制在成功的同时,常常伴随着失败。这种控制方式有较大的风险,对事关重大的活动,一般不宜采用这种控制方式。 《随机控制》(作者雍炯敏)是关于介绍随机控制的英文教材。 目录 Preface Notation Assumption Index Problem Index Chapter 1. Basic Stochastic Calculus 1. Probability 1.1. Probability spaces 1.2. Random variables 1.3. Conditional expectation 1.4. Convcrgence of probabilities 2. Stochastic Processes 2.1. General considerations 2.2. Brownian motions 3. Stopping Times 4. Martingales 5. ItS's Integral 5.1. Nondifferentiability of Brownian motion 5.2. Definition of Ites integral and basic properties 5.3. ItS's formula 5.4. Martingale representation theorems 6. Stochastic Differential Equations 6.1. Strong solutions 6.2. Weak solutions 6.3. Linear SDEs 6.4. Other types of SDEs Chapter 2. Stochastic Optimal Control Problems 1. Introduction 2. Deterministic Cases Revisited 3. Examples of Stochastic Control Problems 3. 1. Production planning 3.2. Investment vs. consumption 3.3. Reinsurance and dividend management 3.4. Technology diffusion 3.5. Queueing systems in heavy traffic 4. Formulations of Stochastic Optimal Control Problems 4.1. Strong formulation 4.2. Weak formulation 5. Existence of Optimal Controls 5.1. A deterministic result 5.2. Existence under strong formulation 5.3. Existence under weak formulation 6. Reachable Sets of Stochastic Control Systems 6.1. Nonconvexity of the reachable sets 6.2. Nonclnseness of the reachable sets 7. Other Stochastic Control Models 7.1. Random duration 7.2. Optimal stopping 7.3. Singular and impulse controls 7.4. Risk-sensitive controls 7.5. Ergodic controls 7.6. Partially observable systems 8. Historical Remarks Chapter 3. Maximum Principle and Stochastic Hamiitonian Systems 1. Introduction 2. The Deterministic Case Rcvisited 3. Statement of the Stochastic Maximum Principle 3.1. Adjoint equations 3.2. The maximum principle and stochastic Hamiltonian systems 3.3. A worked-out example 4. A Proof of the Maximum Principle 4.1. A moment estimate 4.2. Taylor expansions 4.3. Duality analysis and complction of thc proof 5. Sufficient Conditions of Optimality 6. Problems with Statc Constraints 6.1. Formulation of the problem and the maximum principle 6.2. Some preliminary lemmas 6.3. A proof of Theorem 6.1 7. Historical Remarks Chapter 4. Dynamic Programming and HJB Equations 1. Introduction 2. The Deterministic Casc Revisited 3. The Stochastic Principle of Optimality and the HJB Equation 3.1. A stochastic framework for dynamic programming 3.2. Principlc of optimality 3.3. The HJB cquation 4. Other Properties of the Value Function 4.1. Continuous dependence on parameters 4.2. Semiconcavity 5. Viseo~ity Solutions 5.1. Definitions 5.2. Some properties 6. Uniqueness of Viscosity Solutions 6.1. A uniqueness theorem 6.2. Proofs of Lemmas 6.6 and 6.7 7. Historical Rcmarks Chapter 5. The Relationship Between the Maximum Principle and Dynamic Programming 1. Introduction 2. Classical Hamilton-Jacobi Theory 3. Relationship for Deterministic Systems 3.1. Adjoint variable and value function: Smooth case 3.2. Economic interpretation 3.3. Methods of characteristics and the Fcynman Kac formula 3.4. Adjoint variable and value function: Nonsmooth case 3.5. Vcrification theorems 4. Relationship for Stochastic Systems 4.1. Smooth case 4.2. Nonsmooth case: Differentials in the spatial variable 4.3. Nonsmooth case: Differentials in the time variable 5. Stochastic Vcrification Theorems 5.1. Smooth case 5.2. Nonsmooth case 6. Optimal Fccdback Controls 7. Historical Remarks Chapter 6. Linear Quadratic Optimal Control Problems 1. Introduction 2. The Deterministic LQ Problems Revisited 2.1. Formulation 2.2. A minimization problem of a quadratic functional 2.3. A linear Hamiltonian system 2.4. The Riccati equation and feedback optimal control 3. FormuLation of Stochastic LQ Problems 3.1. Statement of the problems 3.2. Examples 4. Finiteness and Solvability 5. A Necessary Condition and a Hamiltonian System 6. Stochastic Riceati Equations 7. GLobal Solvability of Stochastic Riccati EQuations 7.1. Existence: Thc standard case 7.2. Existence: The case C = 0, S = 0, and Q,G >_ 0 7.3. Existence: The one-dimensional case 8. A Mean-variance Portfolio Selection Problem 9. Historical Remarks Chapter 7. Backward Stochastic Differential Equations 1. Introduction 2. Linear Backward Stochastic Differential EQuations 3. Nonlinear Backward Stochastic Differential Equations 3.1. BSDEs in finite deterministic durations: Method of contraction mapping 3.2. BSDEs in random durations: Method of continuation 4. Feynman-Kac-Type Formulae 4.1. Representation via SDEs 4.2. Representation via BSDEs 5. Forward-Backward Stochastic Differential Equations 5.1. General formulation and nonsolvability 5.2. The four-step scheme, a heuristic derivation 5.3. Several solvable classes of FBSDEs 6. Option Pricing Problems 6.1. European call options and the Black-Scholes formula 6.2. Other options 7. Historical Remarks References Index |
标签 | |
缩略图 | ![]() |
书名 | 随机控制 |
副书名 | |
原作名 | |
作者 | 雍炯敏 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787510048029 |
开本 | 24开 |
页数 | 438 |
版次 | 1 |
装订 | 平装 |
字数 | |
出版时间 | 2012-09-01 |
首版时间 | 2012-09-01 |
印刷时间 | 2012-09-01 |
正文语种 | 英 |
读者对象 | 青年(14-20岁),研究人员,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.564 |
CIP核字 | |
中图分类号 | O231 |
丛书名 | |
印张 | 19.5 |
印次 | 1 |
出版地 | 北京 |
长 | 223 |
宽 | 149 |
高 | 20 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | 图字01-2012-4553 |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。