首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 随机控制
内容
编辑推荐

随机控制也叫试探控制,是最原始的控制方式,是其他一切控制方式的基础。随机控制是完全建立在偶然机遇的基础上,是“试试看”思想在控制活动中的体现。随机控制在成功的同时,常常伴随着失败。这种控制方式有较大的风险,对事关重大的活动,一般不宜采用这种控制方式。

《随机控制》(作者雍炯敏)是关于介绍随机控制的英文教材。

目录

Preface

Notation

Assumption Index

Problem Index

Chapter 1. Basic Stochastic Calculus

1. Probability

1.1. Probability spaces

1.2. Random variables

1.3. Conditional expectation

1.4. Convcrgence of probabilities

2. Stochastic Processes

2.1. General considerations

2.2. Brownian motions

3. Stopping Times

4. Martingales

5. ItS's Integral

5.1. Nondifferentiability of Brownian motion

5.2. Definition of Ites integral and basic properties

5.3. ItS's formula

5.4. Martingale representation theorems

6. Stochastic Differential Equations

6.1. Strong solutions

6.2. Weak solutions

6.3. Linear SDEs

6.4. Other types of SDEs

Chapter 2. Stochastic Optimal Control Problems

1. Introduction

2. Deterministic Cases Revisited

3. Examples of Stochastic Control Problems

3. 1. Production planning

3.2. Investment vs. consumption

3.3. Reinsurance and dividend management

3.4. Technology diffusion

3.5. Queueing systems in heavy traffic

4. Formulations of Stochastic Optimal Control Problems

4.1. Strong formulation

4.2. Weak formulation

5. Existence of Optimal Controls

5.1. A deterministic result

5.2. Existence under strong formulation

5.3. Existence under weak formulation

6. Reachable Sets of Stochastic Control Systems

6.1. Nonconvexity of the reachable sets

6.2. Nonclnseness of the reachable sets

7. Other Stochastic Control Models

7.1. Random duration

7.2. Optimal stopping

7.3. Singular and impulse controls

7.4. Risk-sensitive controls

7.5. Ergodic controls

7.6. Partially observable systems

8. Historical Remarks

Chapter 3. Maximum Principle and Stochastic

Hamiitonian Systems

1. Introduction

2. The Deterministic Case Rcvisited

3. Statement of the Stochastic Maximum Principle

3.1. Adjoint equations

3.2. The maximum principle and stochastic

Hamiltonian systems

3.3. A worked-out example

4. A Proof of the Maximum Principle

4.1. A moment estimate

4.2. Taylor expansions

4.3. Duality analysis and complction of thc proof

5. Sufficient Conditions of Optimality

6. Problems with Statc Constraints

6.1. Formulation of the problem and the maximum principle

6.2. Some preliminary lemmas

6.3. A proof of Theorem 6.1

7. Historical Remarks

Chapter 4. Dynamic Programming and HJB Equations

1. Introduction

2. The Deterministic Casc Revisited

3. The Stochastic Principle of Optimality and the HJB Equation

3.1. A stochastic framework for dynamic programming

3.2. Principlc of optimality

3.3. The HJB cquation

4. Other Properties of the Value Function

4.1. Continuous dependence on parameters

4.2. Semiconcavity

5. Viseo~ity Solutions

5.1. Definitions

5.2. Some properties

6. Uniqueness of Viscosity Solutions

6.1. A uniqueness theorem

6.2. Proofs of Lemmas 6.6 and 6.7

7. Historical Rcmarks

Chapter 5. The Relationship Between the Maximum

Principle and Dynamic Programming

1. Introduction

2. Classical Hamilton-Jacobi Theory

3. Relationship for Deterministic Systems

3.1. Adjoint variable and value function: Smooth case

3.2. Economic interpretation

3.3. Methods of characteristics and the Fcynman Kac formula

3.4. Adjoint variable and value function: Nonsmooth case

3.5. Vcrification theorems

4. Relationship for Stochastic Systems

4.1. Smooth case

4.2. Nonsmooth case: Differentials in the spatial variable

4.3. Nonsmooth case: Differentials in the time variable

5. Stochastic Vcrification Theorems

5.1. Smooth case

5.2. Nonsmooth case

6. Optimal Fccdback Controls

7. Historical Remarks

Chapter 6. Linear Quadratic Optimal Control Problems

1. Introduction

2. The Deterministic LQ Problems Revisited

2.1. Formulation

2.2. A minimization problem of a quadratic functional

2.3. A linear Hamiltonian system

2.4. The Riccati equation and feedback optimal control

3. FormuLation of Stochastic LQ Problems

3.1. Statement of the problems

3.2. Examples

4. Finiteness and Solvability

5. A Necessary Condition and a Hamiltonian System

6. Stochastic Riceati Equations

7. GLobal Solvability of Stochastic Riccati EQuations

7.1. Existence: Thc standard case

7.2. Existence: The case C = 0, S = 0, and Q,G >_ 0

7.3. Existence: The one-dimensional case

8. A Mean-variance Portfolio Selection Problem

9. Historical Remarks

Chapter 7. Backward Stochastic Differential Equations

1. Introduction

2. Linear Backward Stochastic Differential EQuations

3. Nonlinear Backward Stochastic Differential Equations

3.1. BSDEs in finite deterministic durations: Method of

contraction mapping

3.2. BSDEs in random durations: Method of continuation

4. Feynman-Kac-Type Formulae

4.1. Representation via SDEs

4.2. Representation via BSDEs

5. Forward-Backward Stochastic Differential Equations

5.1. General formulation and nonsolvability

5.2. The four-step scheme, a heuristic derivation

5.3. Several solvable classes of FBSDEs

6. Option Pricing Problems

6.1. European call options and the Black-Scholes formula

6.2. Other options

7. Historical Remarks

References

Index

标签
缩略图
书名 随机控制
副书名
原作名
作者 雍炯敏
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510048029
开本 24开
页数 438
版次 1
装订 平装
字数
出版时间 2012-09-01
首版时间 2012-09-01
印刷时间 2012-09-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.564
CIP核字
中图分类号 O231
丛书名
印张 19.5
印次 1
出版地 北京
223
149
20
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2012-4553
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/10 6:55:56