《工科微积分(第2版下)》由大连理工大学应用数学系组编,介绍了一元函数微积分及其应用、多元函数微积分及其应用、向量代数与空间解析几何、无穷级数与微分方程等方面的基本概念、基本理论、基本方法和基本技能,为学习后继课程奠定必要的基础。通过微积分的学习,还能够培养理性思维能力、综合应用能力、科学计算能力以及创新能力。
本书是一部结构合理,难度适中,逻辑清晰,叙述详细,特色鲜明,便于学习的教材。分为上下两册,并配有《工科微积分同步辅导》教学参考书。
本书为下册。
图书 | 工科微积分(第2版下高等学校理工科数学类规划教材) |
内容 | 编辑推荐 《工科微积分(第2版下)》由大连理工大学应用数学系组编,介绍了一元函数微积分及其应用、多元函数微积分及其应用、向量代数与空间解析几何、无穷级数与微分方程等方面的基本概念、基本理论、基本方法和基本技能,为学习后继课程奠定必要的基础。通过微积分的学习,还能够培养理性思维能力、综合应用能力、科学计算能力以及创新能力。 本书是一部结构合理,难度适中,逻辑清晰,叙述详细,特色鲜明,便于学习的教材。分为上下两册,并配有《工科微积分同步辅导》教学参考书。 本书为下册。 目录 第5章 向量代数与空间解析几何/1 5.0 引 例/2 5.1 向量及其运算/2 5.1.1 向量的概念/2 5.1.2 向量的线性运算/3 5.1.3 向量的数量积(点积、内积)/6 5.1.4 向量的向量积(叉积、外积)/8 5.1.5 向量的混合积/9 习题5—1/10 5.2 点的坐标与向量的坐标/11 5.2.1 空间直角坐标系/11 5.2.2 向量运算的坐标表示/13 习题5—2/17 5.3 空间的平面与直线/18 5.3.1 平 面/18 5.3.2 直 线/21 5.3.3 点、平面、直线的位置关系/23 习题5—3/30 5.4 曲面与曲线/31 5.4.1 曲面、曲线的方程/31 5.4.2 柱面、旋转面和锥面/34 5.4.3 二次曲面/37 5.4.4 空间几何图形举例/40 习题5—4/42 5.5 应用实例/44 复习题五/48 习题参考答案与提示/50 第6章 多元函数微分学及其应用/52 6.0 引 例/53 6.1 多元函数的基本概念/53 6.1.1 n维点集/53 6.1.2 多元函数的定义/55 6.1.3 二元函数的极限/57 6.1.4 二元函数的连续性/60 习题6一l/61 6.2 偏导数与高阶偏导数/62 6.2.1 偏导数/62 6.2.2 高阶偏导数/66 习题6—2/68 6.3 全微分及其应用/70 6.3.1 全微分的概念/70 6.3.2 可微与可偏导的关系/71 6.3.3 全微分的几何意义/74 6.3.4 全微分的应用/75 习题6—3/76 6.4 多元复合函数的微分法/77 6.4.1 链式法则/77 6.4.2 全微分形式不变性/82 6.4.3 隐函数的求导法则/83 习题6—4/87 6.5 偏导数的几何应用/89 6.5.1 空间曲线的切线与法平面/89 6.5.2 曲面的切平面与法线/91 习题6—5/94 6.6 多元函数的极值/95 6.6.1 多元函数的极值及最大值、最小值/95 6.6.2 条件板值拉格朗日乘数法/98 习题6—6/102 6.7 方向导数与梯度/102 6.7.1 方向导数/102 6.7.2 数量场的梯度/105 习题6—7/108 6.8 应用实例/108 复习题六/112 习题参考答案与提示/114 第7章 多元数量值函数积分学/117 7.0 引 例/118 7.1 多元数量值函数积分的概念与性质/118 7.1.1 非均匀分布的几何形体的质量问题/118 7.1.2 多元数量值函数积分的概念/120 7.1.3 多元数量值函数积分的性质/120 7.1.4 多元数量值函数积分的分类/121 习题7—1/123 7.2 二重积分的计算/124 7.2.1 二重积分的几何意义/124 7.2.2 直角坐标系下二重积分的计算/124 7.2.3 极坐标系下二重积分的计算/129 7.2.4 二重积分的换元法/132 习题7—2/134 7.3 三重积分的计算/136 7.3.1 直角坐标系下三重积分的计算/136 7.3.2 柱面坐标系与球面坐标系下三重积分的计算/140 习题7—3/146 7.4 数量值函数的曲线与曲面积分的计算/148 7.4.1 第一型曲线积分的计算/148 7.4.2 第一型曲面积分的计算/152 习题7—4/155 7.5 数量值函数积分在几何、物理中的典型应用/157 7.5.1 几何问题举例/157 7.5.2 质心与转动惯量/158 7.5.3 引 力/162 习题7—5/163 7.6 应用实例/163 复习题七/167 习题参考答案与提示/169 第8章 向量值函数的曲线积分与曲面积分/171 8.0 引 例/172 8.1 向量值函数在有向曲线上的积分/172 8.1.1 向量场/172 8.1.2 第二型曲线积分的概念/172 8.1.3 第二型曲线积分的计算/174 习题8—1/177 8.2 向量值函数在有向曲面上的积分/178 8.2.1 曲面的侧/178 8.2.2 第二型曲面积分的概念/179 8.2.3 第二型曲面积分的计算/181 习题8—2/186 8.3 重积分、曲线积分、曲面积分之间的联系/186 8.3.1 格林公式/187 8.3.2 高斯公式/191 8.3.3 斯托克斯公式/193 习题8—3/195 8.4 平面曲线积分与路径无关的条件/196 8.4.1 曲线积分与路径无关的条件/196 8.4.2 原函数、全微分方程/200 习题8—4/202 8.5 场论简介/203 8.5.1 向量场的散度/203 8.5.2 向量场的旋度/205 8.5.3 几类特殊的场/207 习题8—5/208 8.6 应用实例/208 复习题八/211 习题参考答案与提示/212 第9章 无穷级数/215 9.0 引 例/216 9.1 常数项无穷级数的概念与基本性质/216 9.1.1 常数项无穷级数的概念/216 9.1.2 常数项无穷级数的基本性质/219 习题9—1/221 9.2 正项级数敛散性的判别法/222 9.2.1 正项级数收敛的基本定理/222 9.2.2 比较判别法/223 9.2.3 比值判别法/225 9.2.4 根值判别法/227 9.2.5 积分判别法/228 习题9—2/228 9.3 任意项级数敛散性的判别法/230 9.3.1 交错级数敛散性的判别法/230 9.3.2 绝对收敛与条件收敛/231 习题9—3/233 9.4 幂级数/234 9.4.1 函数项级数的概念/234 9.4.2 幂级数及其收敛域/236 9.4.3 幂级数的运算与性质/240 9.4.4 泰勒级数/243 9.4.5 常用初等函数的幂级数展开式/245 习题9—4/250 9.5 傅里叶级数/251 9.5.1 三角级数/252 9.5.2 以2Ⅱ为周期的函数的傅里叶级数/252 9.5.3 以2Z为周期的函数的傅里叶级数/258 9.5.4 在[一z,Z]上有定义的函数的傅里叶级数/259 9.5.5 在[0,z]上有定义的函数的傅里叶级数/260 习题9—5/261 9.6 应用实例/263 复习题九/267 习题参考答案与提示/268 附录 汉英数学名词对照与索引/272 参考文献/275 |
标签 | |
缩略图 | ![]() |
书名 | 工科微积分(第2版下高等学校理工科数学类规划教材) |
副书名 | |
原作名 | |
作者 | 曹铁川 |
译者 | |
编者 | |
绘者 | |
出版社 | 大连理工大学出版社 |
商品编码(ISBN) | 978756113485602 |
开本 | 16开 |
页数 | 275 |
版次 | 2 |
装订 | 平装 |
字数 | 397 |
出版时间 | 2007-02-01 |
首版时间 | 2005-02-01 |
印刷时间 | 2011-06-01 |
正文语种 | 汉 |
读者对象 | 普通青少年,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.442 |
CIP核字 | |
中图分类号 | O172 |
丛书名 | |
印张 | 18 |
印次 | 9 |
出版地 | 辽宁 |
长 | 260 |
宽 | 185 |
高 | 12 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。