内勒、塞尔编写的《工程与科学中的线性算子理论(英文版)》旨在为工程师、科研工作者和应用数学工作者提供适用于他们的泛函分析的基础知识。尽管书中采取的是定义-定理-证明的数学模式,但是该书在所涵盖知识点的选取和解释说明方面还是下了很大的功夫。该书也可以被用作高级教程,为了便于不同知识背景的学生学习,书中附录部分涵盖了许多有益的数学课题。
图书 | 工程与科学中的线性算子理论(英文版) |
内容 | 编辑推荐 内勒、塞尔编写的《工程与科学中的线性算子理论(英文版)》旨在为工程师、科研工作者和应用数学工作者提供适用于他们的泛函分析的基础知识。尽管书中采取的是定义-定理-证明的数学模式,但是该书在所涵盖知识点的选取和解释说明方面还是下了很大的功夫。该书也可以被用作高级教程,为了便于不同知识背景的学生学习,书中附录部分涵盖了许多有益的数学课题。 目录 Preface Chapter 1 Introduction 1. Black Boxes 2. Structure of the Plane 3. Mathematical Modeling 4. The Axiomatic Method. The Process of Abstraction 5. Proofs of Theorems Chapter 2 Set-Theoretic Structure 1. Introduction 2. Basic Set Operations 3. Cartesian Products 4. Sets of Numbers 5. Equivalence Relations and Partitions 6. Functions 7. Inverses 8. Systems Types Chapter 3 Topological Structure 1. Introduction Port A Introduction to Metric Spaces 2. Metric Spaces: Definition 3. Examples of Metric Spaces 4. Subspaces and Product Spaces 5. Continuous Functions 6. Convergent Sequences 7. A Connection Between Continuity and Convergence Part B Some Deeper Metric Space Concepts 8. Local Neighborhoods 9. Open Sets 10. More on Open Sets 11. Examples of Homeomorphic Metric Spaces 12. Closed Sets and the Closure Operation 13. Completeness 14. Completion of Metric Spaces 15. Contraction Mapping 16. Total Boundexlness and Approximations 17. Compactness Chapter 4 Algebraic Structure 1. Introduction Part A Introduction to Linear Spaces 2. Linear Spaces and Linear Subspaces 3. Linear Transformations 4. Inverse Transformations 5. Isomorphisms 6. Linear Independence and Dependence 7. Hamel Bases and Dimension 8. The Use of Matrices to Represent Linear Transformations 9. Equivalent Linear Transformations Part B Further Topics 10. Direct Sums and Sums 11. Projections 12. Linear Functionals and the Alge- braic Conjugate of a Linear Space 13. Transpose of a Linear Transformation Chapter 5 Combined Topological and Algebraic Structure 1. Introduction Part A Banach Spaces 2. Definitions 3. Examples of Normal Linear Spaces 4. Sequences and Series 5. Linear Subspaces 6. Continuous Linear Transformations 7. Inverses and Continuous Inverses 8. Operator Topologies 9. Equivalence of Normed Linear Spaces 10. Finite-Dimensional Spaces 11. Normed Conjugate Space and Conjugate Operator Part B Hilbert Spaces 12. Inner Product and HUbert Spaces 13. Examples 14. Orthogonality 15. Orthogonal Complements and the Projection Theorem 16. Orthogonal Projections 17. Orthogonal Sets and Bases: Generalized Fourier Series 18. Examples of Orthonormal Bases 19. Unitary Operators and Equiv- alent Inner Product Spaces 20. Sums and Direct Sums of Hilbert Spaces 21. Continuous Linear Functionals Part C Special Operators 22. The Adjoint Operator 23. Normal and Self-Adjoint Operators 24. Compact Operators 25. Foundations of Quantum Mechanics Chapter 6 Analysis of Linear Oper- ators (Compact Case) 1. Introductioa Part A An Illustrative Example 2. Geometric Analysis of Operators 3. Geometric Analysis. The Eigen- value-Eigenvector Problem 4. A Finite-Dimensional Problem Part B The Spectrum 5. The Spectrum of Linear Transformations 6. Examples of Spectra 7. Properties of the Spectrum Part C Spectral Analysis 8. Resolutions of the Identity 9. Weighted Sums of Projections 10. Spectral Properties of Compact, Normal, and Self-Adjoint Operators 11. The Spectral Theorem 12. Functions of Operators (Operational Calculus) 13. Applications of the Spectral Theorem 14. Nonnormal Operators Chapter 7 Analysis of Unbounded Operators 1. Introduction 2. Green's Functions 3. Symmetric Operators 4. Examples of Symmetric Operators 5. Sturmiouville Operators 6. Ghrding's Inequality 7. EUiptie Partial Differential Operators 8. The Dirichlet Problem 9. The Heat Equation and Wave Equation 10. Self-Adjoint Operators 11. The Cayley Transform 12. Quantum Mechanics, Revisited 13. Heisenberg Uncertainty Principle 14. The Harmonic Oscillator Appendix ,4 The H61der, Schwartz, and Minkowski Inequalities Appendix B Cardinality Appendix C Zom's temnm Appendix D Integration and Measure Theory 1. Introduction 2. The Riemann Integral 3. A Problem with the Riemann Integral 4. The Space Co 5. Null Sets 6. Convergence Almost Everywhere 7. The Lebesgue Integral 8. Limit Theorems 9. Miscellany 10. Other Definitions of the Integral 11. The Lebesgue Spaces, 12. Dense Subspaees of 13. Differentiation 14. The Radon-Nikodym Theorem 15. Fubini Theorem Appendix E Probability Spaces and Stochastic Processes 1. Probability Spaces 2. Random Variables and Probability Distributions 3. Expectation 4. Stochastic Independence 5. Conditional Expectation Operator 6. Stochastic Processes Index of Symbols Index |
标签 | |
缩略图 | ![]() |
书名 | 工程与科学中的线性算子理论(英文版) |
副书名 | |
原作名 | |
作者 | (美)内勒//塞尔 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787510095566 |
开本 | 24开 |
页数 | 624 |
版次 | 1 |
装订 | 平装 |
字数 | 518 |
出版时间 | 2015-05-01 |
首版时间 | 2015-05-01 |
印刷时间 | 2015-05-01 |
正文语种 | 英 |
读者对象 | 普通大众 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.768 |
CIP核字 | 2015060722 |
中图分类号 | O177 |
丛书名 | |
印张 | 27 |
印次 | 1 |
出版地 | 北京 |
长 | 224 |
宽 | 148 |
高 | 27 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。