首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 矩阵论(下)/俄罗斯数学精品译丛
内容
编辑推荐

本书是根据苏联国立技术理论出版社于1953年出版的甘特马赫尔所著的《矩阵论》来译出的,本书分上、下两册,下册为原书第二部分。《矩阵论(下)》为下册,包括:复反对称矩阵的范式;对于微分方程的应用;本原矩阵与非本原矩阵;阿达玛正则性判定及其推广等内容。

内容推荐

本书是根据苏联国立技术理论出版社于1953年出版的甘特马赫尔所著的《矩阵论》来译出的,本书分上、下两册,下册为原书第二部分。包括:复对称、反对称与正交矩阵、奇异矩阵束、非负元素所构成的矩阵、特征值的正则性的各种判定与局部化、矩阵论对于线性微分方程组研究的应用、路斯一胡尔维茨问题及其相邻近的问题、特征数与奇异数的不等式等内容。

《矩阵论(下)》为下册。

《矩阵论(下)》可供高等院校本科生、研究生、数学及物理科学研究人员和王程师参考之用。

目录

第11章 复对称,反对称与正交的矩阵∥1

§1 关于复正变矩阵与U-矩阵的一些公式∥1

§2 复矩阵的极分解式∥5

§3 复对称矩阵的范式∥7

§4 复反对称矩阵的范式∥9

§5 复正交矩阵的范式∥14

第12章 奇异矩阵束∥19

§1 绪言∥19

§2 正则矩阵束∥20

§3 奇异矩阵束,化简定理∥23

§4 奇异矩阵束的范式∥28

§5 矩阵束的最小指标,矩阵束的严格等价性判定∥30

§6 奇异二次型束∥32

§7 对于微分方程的应用∥36

第13章 非负元素所构成的矩阵∥40

§1 一般的性质∥40

§2 不可分解非负矩阵的谱性质∥42

§3 可分解矩阵∥52

§4 可分解矩阵的范式∥60

§5 本原矩阵与非本原矩阵∥64

§6 随机矩阵∥68

§7 关于有限多个状态的齐次马尔可夫链的极限概率∥72

§8 完全非负矩阵∥80

§9 振荡矩阵∥85

第14章 特征值的正则性的各种判定与局部化∥93

§1 阿达玛正则性判定及其推广∥93

§2 矩阵的范数∥96

§3 阿达玛判定向分块矩阵的推广∥99

§4 费德列尔正则性判定∥100

§5 格尔什戈林圆与其他的局部化区域∥lOl

第15章 矩阵论对于线性微分方程组研究的应用∥106

§1 有变系数的线性微分方程组的一般的概念∥106

§2 李雅普诺夫变换∥109

§3 可化组∥111

§4 可化组的范式,叶鲁金定理∥113

§5 矩阵积分级数∥116

§6 乘积积分,沃尔泰拉的徽积分∥120

§7 复区域上微分方程组的一般性质∥124

§8 复区域上的乘积积分∥126

§9 孤立奇点∥129

§10 正则奇点∥135

§11 可化解析组∥148

§12 多个矩阵的解析函数及其在微分方程组的研究中的应用——伊·阿·拉波-丹尼列夫斯基的工作∥151

第16章 路斯-胡尔维茨问题及其相邻近的问题∥154

§1 绪言∥154

§2 柯西指标∥156

§3 路斯算法∥158

§4 特殊情形的例子∥163

§5 李雅普诺夫定理∥166

§6 路斯-胡尔维茨定理∥170

§7 兰道公式∥176

§8 路斯-胡尔维茨定理中的特殊情形∥178

§9 二次型方法,多项式的不同实根个数的确定∥181

§10 有限秩的无限冈恰列夫矩阵∥183

§11 用其分子与分母的系数来定出任-有理分式的指标∥186

§12 路斯-胡尔维茨定理的第二个证明∥194

§13 路斯-胡尔维茨定理的一些补充,列纳尔与希帕尔的稳定性判定∥198

§14 胡尔维茨多项式的一些性质,斯蒂尔吉斯定理用连分式表出胡尔维茨多项式∥202

§15 稳定性区域,马尔可夫参数∥208

§16 与力矩问题的联系∥212

§17 胡尔维茨行列式与马尔可夫行列式之间的联系∥215

§18 马尔可夫定理与切比雪夫定理∥217

§19 广义的路斯一胡尔维茨问题∥224

第17章 特征数与奇异数的不等式∥227

§1 强数列∥227

§2 诺伊曼-霍尔诺不等式∥231

§3 魏尔不等式∥234

§4 埃尔米特算子特征数之和与乘积的最大、最小性质∥237

§5 算子之和与乘积的特征数与奇异数的不等式∥243

§6 关于埃尔米特算子之和与乘积的谱问题的其他提法∥245

注解∥252

索引∥259

编辑手记∥261

标签
缩略图
书名 矩阵论(下)/俄罗斯数学精品译丛
副书名
原作名
作者 (俄)甘特马赫尔
译者 柯召//郑元禄
编者
绘者
出版社 哈尔滨工业大学出版社
商品编码(ISBN) 9787560339016
开本 16开
页数 264
版次 1
装订 平装
字数 370
出版时间 2013-06-01
首版时间 2013-06-01
印刷时间 2013-06-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.392
CIP核字 2012314767
中图分类号 O151.21
丛书名
印张 17.5
印次 1
出版地 黑龙江
250
174
15
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 08-2012-003号
版权提供者 FIZMATLIT PUBLISHERS RUSSIA
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/12 2:15:40