首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 脉冲耦合神经网络及应用(精)
内容
目录

Chapter 1 Pulse-Coupled Neural Networks

 1.1 Linking Field Model

 1.2 PCNN

 1.3 Modified PCNN

1.3.1 Intersection Cortical Model

1.3.2 Spiking Cortical Model

1.3.3 Multi-channel PCNN

 Summary

 References

Chapter 2 Image Filtering

 2.1 Traditional Filters

2.1.1 Mean Filter

2.1.2 Median Filter

2.1.3 Morphological Filter

2.1.4 Wiener Filter

 2.2 Impulse Noise Filtering

2.2.1 Description of Algorithm Ⅰ

2.2.2 Description of Algorithm Ⅱ

2.2.3 Experimental Results and Analysis

 2.3 Gaussian Noise Filtering

2.3.1 PCNNNI and Time Matrix

2.3.2 Description of Algorithm Ⅲ

2.3.3 Experimental Results and Analysis

 Summary

 References

Chapter 3 Image Segmentation

 3.1 Traditional Methods and Evaluation Criteria

3.1.1 Image Segmentation Using Arithmetic Mean

3.1.2 Image Segmentation Using Entropy and Histogram

3.1.3 Image Segmentation Using Maximum Between-cluster Variance

3.1.4 Objective Evaluation Criteria

 3.2 Image Segmentation Using PCNN and Entropy

 3.3 Image Segmentation Using Simplified PCNN and GA

3.3.1 Simplified PCNN Model

3.3.2 Design of Application Scheme of GA

3.3.3 Flow of Algorithm

3.3.4 Experimental Results and Analysis

 Summary

 References

Chapter 4 Image Coding

 4.1 Irregular Segmented Region Coding

4.1.1 Coding of Contours Using Chain Code

4.1.2 Basic Theories on Orthogonality

4.1.3 Orthonormalizing Process of Basis Functions

4.1.4 ISRC Coding and Decoding Framework

 4.2 Irregular Segmented Region Coding Based on PCNN

4.2.1 Segmentation Method

4.2.2 Experimental Results and Analysis

 Summary

 References

Chapter 5 Image Enhancement

 5.1 Image Enhancement

5.1.1 Image Enhancement in Spatial Domain

5.1.2 Image Enhancement in Frequency Domain

5.1.3 Histogram Equalization

 5.2 PCNN Time Matrix

5.2.1 Human Visual Characteristics

5.2.2 PCNN and Human Visual Characteristics

5.2.3 PCNN Time Matrix

 5.3 Modified PCNN Model

 5.4 Image Enhancement Using PCNN Time Matrix

 5.5 Color Image Enhancement Using PCNN

 Summary

 References

Chapter 6 Image Fusion

 6.1 PCNN and Image Fusion

6.1.I Preliminary of Image Fusion

6.1.2 Applications in Image Fusion

 6.2 Medical Image Fusion

6.2.1 Description of Model

6.2.2 Image Fusion Algorithm

6.2.3 Experimental Results and Analysis

 6.3 Multi-focus Image Fusion

6.3.1 Dual-channel PCNN

6.3.2 Image Sharpness Measure

6.3.3 Principle of Fusion Algorithm

6.3.4 Implementation of Multi-focus Image Fusion

6.3.5 Experimental Results and Analysis

 Summary

 References

Chapter 7 Feature Extraction

 7.1 Feature Extraction with PCNN

7.1.1 Time Series

7.1.2 Entropy Series

7.1.3 Statistic Series

7.1.4 Orthogonal Transform

 7.2 Noise Image Recognition

7.2.1 Feature Extraction Using PCNN

7.2.2 Experimental Results and Analysis

 7.3 Image Recognition Using Barycenter of Histogram Vector

 7.4 Invariant Texture Retrieval

7.4.1 Texture Feature Extraction Using PCNN

7.4.2 Experimental Results and Analysis

 7.5 Iris Recognition System

7.5.1 Iris Recognition

7.5.2 Iris Feature Extraction Using PCNN

7.5.3 Experimental Results and Analysis

 Summary

 References

Chapter 8 Combinatorial Optimization

 8.1 Modified PCNN Based on Auto-wave

8.1.1 Auto-wave Nature of PCNN

8.1.2 Auto-wave Neural Network

8.1.3 Tristate Cascading Pulse Couple Neural Network

 8.2 The Shortest Path Problem

8.2.1 Algorithm for Shortest Path Problems Based on TCPCNN

8.2.2 Experimental Results and Analysis

  8.3 Traveling Salesman Problem

8.3.1 Algorithm for Optimal Problems Based on AWNN

8.3.2 Experimental Results and Analysis

 Summary

 References

Chapter 9 FPGA Implementation of PCNN Algorithm

 9.1 Fndamental Principle of PCNN Hardware Implementation

 9.2 Altera DE2-70 Implementation of PCNN

9.2.1 PCNN Implementation Using Altera DE2-70

9.2.2 Experimental Results and Analysis

 Summary

 References

Index

内容推荐

Applications of Pulse-Coupled Neural Networks explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields.

This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science.

编辑推荐

本书是介绍脉冲耦合神经网络在图像滤波、图像分割、图像编码、图像增强、图像融合、特征提取和优化组合等方面的应用。书中包含了具体的图像处理算法、应用实例以及源代码,帮助读者建立脉冲耦合神经网络在图像处理中的应用。该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。

标签
缩略图
书名 脉冲耦合神经网络及应用(精)
副书名
原作名
作者 马义德//绽琨//王兆浜
译者
编者
绘者
出版社 高等教育出版社
商品编码(ISBN) 9787040279788
开本 16开
页数 199
版次 1
装订 精装
字数 300
出版时间 2010-06-01
首版时间 2010-06-01
印刷时间 2010-06-01
正文语种
读者对象 普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 0.5
CIP核字
中图分类号 TP183
丛书名
印张 13.25
印次 1
出版地 北京
242
160
15
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/18 6:55:23