首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 奇非线性波方程--分支和精确解(精)
内容
编辑推荐

《奇非线性波方程——分支和精确解》由李继彬编著。

The aim of this book is to give a more systematic account for the bifurcation theory method of dynamical systems to find exact travelling wave solutions and their dynamics with an emphasis on the understanding of the above mentioned "new wave" for two classes of singular nonlinear travelling equations.

内容推荐

《奇非线性波方程——分支和精确解》由李继彬编著。

《奇非线性波方程——分支和精确解》讲述了:

The studies of solitons and complete integrability of nonlinear wave equations and

   bifurcations and chaos of dynamical systems are two very active fields in nonlinear science. Because a homoclinic orbit of a travelling wave system (ODEs) corresponds to a solitary wave solution of a nonlinear wave equation (PDE). This fact provides an intersection point for the above two study fields. The aim of this book is to give a more systematic account for the bifurcation theory method of dynamical systems to find exact travelling wave solutions and their dynamics with an emphasis on the singular properties (so called "new waves mathematics") of solutions, such as peakons, cuspons, compactons and loop solutions et al., for some classes of very well known nonlinear wave equations. Readers shall find how standard methods of the theory of dynamical systems may be used for the study of travelling wave solutions even in the case of systems with discontinuities.

Any reader trying to understand the subject of this book is only required to know the elementary theory of dynamical systems and elementary knowledge of nonlinear wave equations. This book should be useful as a research reference for graduate students, teachers and engineers in different study fields.

目录

Preface

Chapter 1 Some Physical Models Which Yield Two Classes of Singular Travelling Wave Systems

 1.1 Nonlinear wave equations having the first class of singular nonlinear travelling wave systems

 1.2 Nonlinear wave equations having the second class of singular nonlinear travelling wave equations

Chapter 2 Dynamics of Solutions of Singular Travelling Systems

 2.1 Some preliminary knowledge of dynamical systems

 2.2 Phase portraits of travelling wave systems having singular straight lines

 2.3 Dynamical behavior of orbits in neighborhoods of the singular

straight line: the case of $1,2 are saddle points

 2.4 Dynamical behavior of orbits in neighborhoods of the singular straight line: the case of $1,2 are node points

 2.5 Dynamical behavior of orbits divided by the singular curves:

singular travelling wave systems of the second class

Chapter 3 Exact Travelling Wave Solutions and Their Bifurcations for the Kudryashov-Sinelshchikov Equation

 3.1 Bifurcations of phase portraits of system (3.0.4)

 3.2 Exact travelling wave solutions for/ -- -3,-4

 3.3 Exact travelling wave solutions for/ --- 1, 2

Chapter 4 Bifurcations of Travelling Wave Solutions of Generalized Camassa-Holm Equation (I)

 4.1 Bifurcations of phase portraits of (4.0.2)

 4.2 The exact parametric representations of travelling wave solutions of (4.0.1)

 4.3 The existence of smooth solitary wave solutions and periodic wave solutions

Chapter 5 Bifurcations of Travelling Wave Solutions of Higher Order Korteweg-De Vries Equations

 5.1 Travelling wave solutions of the second order Korteweg-De Vries equation in the parameter condition group (I)

 5.2 Travelling wave solutions of the second order Korteweg-De Vries

equation in the parameter condition group (II)

 5.3 Travelling wave solutions for the generalization form of modified Korteweg-De Vries equation

Chapter 6 The Bifurcations of the Travelling Wave Solutions of K(m, n) Equation

 6.1 Bifurcations of phase portraits of system (6.0.2)

 6.2 Some exact explicit parametric representations of travelling wave solutions

 6.3 Existence of smooth and non-smooth solitary wave and periodic wave solutions

 6.4 The existence of uncountably infinite many breaking wave

solutions and convergence of smooth and non-smooth travelling

wave solutions as parameters are varied

Chapter 7 Kink Wave Solutions Determined by a Parabola Solution of Planar Dynamical Systems

 7.1 Six classes of nonlinear wave equations

 7.2 Existence of parabola solutions of (7.1.2) and their parametric representations

 7.3 Kink wave solutions for 6 classes of nonlinear wave equations

Chapter 8 Exact Dark Soliton, Periodic Solutions and Chaotic Dynamics

in a Perturbed Generalized Nonlinear Schrhdinger Equation

 8.1 The exact solutions of (8.0.2) for the cubic NLS equation with f(q) = aq

 8.2 The exact solutions of (8.0.2) for the cubic-quintic NLS equation with f(q) = cq q2

 8.3 The persistence of dark solition for the perturbed cubic-quintic NLS equation (8.0.12) without the term V(x)u

 8.4 Chaotic behavior of the travelling wave solutions for the perturbed cubic-quintic NLS equation (8.0.12)

Chapter 9 Bifurcations and Some Exact Travelling Wave Solutions of a Generalized Camassa-Holm Equation (II)

 9.1 Bifurcations of phase portraits of (9.0.5)

 9.2 Some exact travelling wave solution of (9.0.2) in the symmetry cases.

 9.3 The exact travelling wave solutions of equation (9.0.2) in a non-symmetric case

Chapter 10 Bifurcations of Breather Solutions of Some Nonlinear Wave Equations

 10.1 Introduction

 10.2 Bifurcations of travelling wave solutions of system (10.1.7) when VRp(0, r) given by (10.1.2)

 10.3 Travelling wave solutions of system (10.1.1) with Vap(0, r) given by (10.1.2)

 10.4 Bifurcations of solutions of (10.1.7) with VRp(0, r) given by (10.1.3).

 10.5 Travelling wave solutions of (10.1.1) with VRP(O, r) given by (10.1.3)

 10.6 Bifurcations of breather solutions of (10.1.4)

Chapter 11 Bounded Solutions of (n + 1)-dimensional Sine-and Sinh-Gordon Equations

 11.1 (n + 1)-dimensional Sine-and Sinh-Gordon equations

 11.2 The bounded solutions of the systems (11.1.4) and (11.1.5)

 11.3 The bounded travelling wave solutions of the form (ll.l.2a) of (ll.l.la)

Chapter 12 Exact Loop Solutions and Their Dynamics of Some Nonlinear Wave Equations

 12.1 The elastic beam equation

 12.2 The reduced Ostrovsky equation

 12.3 The short pulse equation

 12.4 More nonlinear wave equations which have breaking loop-solutions-.

Chapter 13 Exact Solitary Wave, Periodic and Quasi-periodic Wave Solutions for the KdV6 Equations

 13.1 The equilibrium points and linearized systems of (13.0.6)

 13.2 Exact solitary wave and quasi-periodic wave solutions of the CDG equation (13.0.12)

 13.3 Exact solutions of the Kaup-Kupershmidt equation (13.0.10)

 13.4 Exact solutions of the KdV6 equation (13.0.2)

 13.5 Exact solutions of the KdV6 equation (13.0.3)

Chapter 14 Exact Travelling Wave Solutions and Their Dynamics for a Class Coupled Nonlinear Wave Equations

 14.1 Exact explicit solutions y = xl() of (14.0.4a) when P(t) has the factorization (14.1.1)

 14.2 Some properties of solutions v() of equation (14.0.45)

Chapter 15 On the Travelling Wave Solutions for a Nonlinear Diffusion-convection Equation

 15.1 The dynamics of the travelling wave solutions and the existence of global monotonic wavefront solutions of (15.0.1)

 15.2 Dynamical behavior of system (15.0.3)

 15.3 Exact travelling wave solutions of (15.0.3)

References

标签
缩略图
书名 奇非线性波方程--分支和精确解(精)
副书名
原作名
作者 李继彬
译者
编者
绘者
出版社 科学出版社
商品编码(ISBN) 9787030379177
开本 16开
页数 365
版次 1
装订 精装
字数
出版时间 2013-01-01
首版时间 2013-01-01
印刷时间 2013-01-01
正文语种
读者对象 普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.692
CIP核字
中图分类号
丛书名
印张 22.8125
印次 1
出版地 北京
245
173
22
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/19 17:14:41