加尼尔编著的《可压缩流的大涡模拟方法(英文)》旨在讲述les基础及其在实践中的应用。为了最大程度地缩小理论框架之间的衔接,缓解les研究和日益增长的工程模型应用中的需求之间的矛盾,《可压缩流的大涡模拟方法(英文)》最大程度地将和该领域有关论题囊括其中,用全新的方式全面讲述了les理论及其应用。
图书 | 可压缩流的大涡模拟方法 |
内容 | 编辑推荐 加尼尔编著的《可压缩流的大涡模拟方法(英文)》旨在讲述les基础及其在实践中的应用。为了最大程度地缩小理论框架之间的衔接,缓解les研究和日益增长的工程模型应用中的需求之间的矛盾,《可压缩流的大涡模拟方法(英文)》最大程度地将和该领域有关论题囊括其中,用全新的方式全面讲述了les理论及其应用。 目录 1 Introduction 2 Les Governing Equations 2.1 Preliminary Discussion 2.2 Governing Equations 2.2.1 Fundamental Assumptions 2.2.2 Conservative Formulation 2.2.3 Alternative Formulations 2.3 Filtering Operator 2.3.1 Definition 2.3.2 Discrete Representation of Filters 2.3.3 Filtering of Discontinuities 2.3.4 Filter Associated To The Numerical Method 2.3.5 Commutation Error 2.3.6 Favre Filtering 2.3.7 Summary of The Different Type of Filters 2.4 Formulation of The Filtered Governing Equations 2.4.1 Enthalpy Formulation 2.4.2 Temperature Formulation 2.4.3 Pressure Formulation 2.4.4 Entropy Formulation 2.4.5 Filtered Total Energy Equations 2.4.6 Momentum Equations 2.4.7 Simplifying Assumptions 2.5 Additional Relations For Les of Compressible Flows 2.5.1 Preservation of Original Symmetries 2.5.2 Discontinuity Jump Relations For Les 2.5.3 Second Law of Thermodynamics 2.6 Model Construction 2.6.1 Basic Hypothesis 2.6.2 Modeling Strategies 3 Compressible Turbulence Dynamics 3.1 Scope And Content of This Chapter 3.2 Kovasznay Decomposition of Turbulent Fluctuations 3.2.1 Kovasznay's Linear Decomposition 3.2.2 Weakly Nonlinear Kovasznay Decomposition 3.3 Statistical Description of Compressible Turbulence 3.4 Shock-Turbulence Interaction 3.4.1 Introduction To The Linear Interaction Approximation Theory 3.4.2 Vortical Turbulence-Shock Interaction 3.4.3 Mixed-Mode Turbulence-Shock Interaction 3.4.4 Consequences For Subgrid Modeling 3.5 Different Regimes of Isotropic Compressible Turbulence 3.5.1 Quasi-Isentropic-Turbulence Regime 3.5.2 Nonlinear Subsonic Regime 3.5.3 Supersonic Regime 3.5.4 Consequences For Subgrid Modeling 4 Functional Modeling 4.1 Basis of Functional Modeling 4.1.1 Phenomenology of Scale Interactions 4.1.2 Basic Functional Modeling Hypothesis 4.2 Sgs Viscosity 4.2.1 The Boussinesq Hypothesis 4.2.2 Smagorinsky Model 4.2.3 Structure Function Model 4.2.4 Mixed Scale Model 4.3 Isotropic Tensor Modeling 4.4 Sgs Heat Flux 4.5 Modeling of The Subgrid Turbulent Dissipation Rate 4.6 Improvement of Sgs Models 4.6.1 Structural Sensors And Selective Models 4.6.2 Accentuation Technique And Filtered Models 4.6.3 High-Pass Filtered Eddy Viscosity 4.6.4 Wall-Adapting Local Eddy-Viscosity Model 4.6.5 Dynamic Procedure 4.6.6 Implicit Diffusion And The Implicit Les Concept 5 Explicit Structural Modeling 5.1 Motivation of Structural Modeling 5.2 Models Based On Deconvolution 5.2.1 Scale-Similarity Model 5.2.2 Approximate Deconvolution Model 5.2.3 Tensor-Diffusivity Model 5.3 Regularization Techniques 5.3.1 Eddy-Viscosity Regularization 5.3.2 Relaxation Regularization 5.3.3 Regularization By Explicit Filtering 5.4 Multi-Scale Modeling of Subgrid-Scales 5.4.1 Multi-Level Approaches 5.4.2 Stretched-Vortex Model 5.4.3 Variational Multi-Scale Model 6 Relation Between Sgs Model And Numerical Discretization 6.1 Systematic Procedures For Nonlinear Error Analysis 6.1.1 Error Sources 6.1.2 Modified Differential Equation Analysis 6.1.3 Modified Differential Equation Analysis In Spectral Space 6.2 Implicit Les Approaches Based On Linear And Nonlinear Discretization Schemes 6.2.1 The Volume Balance Procedure of Schumamm 6.2.2 The Kawamura-Kuwahara Scheme 6.2.3 The Piecewise-Parabolic Method 6.2.4 The Flux-Corrected-Transport Method 6.2.5 The Mpdata Method 6.2.6 The Optimum Finite-Volume Scheme 6.3 Implicit Les By Adaptive Local Deconvolution 6.3.1 Fundamental Concept of Aldm 6.3.2 Aldm For The Incompressible Navier-Stokes Equations. 6.3.3 Aldm For The Compressible Navier-Stokes Equations 7 Boundary Conditions For Large-Eddy Simulation of Compressible Flows 7.1 Introduction 7.2 Wall Modeling For Compressible Les 7.2.1 Statement of The Problem 7.2.2 Wall Boundary Conditions In The Kovasznay Decomposition Framework: An Insight 7.2.3 Turbulent Boundary Layer: Vorticity And Temperature Fields 7.2.4 Turbulent Boundary Layer: Acoustic Field 7.2.5 Consequences For The Development of Compressible Wall Models 7.2.6 Extension of Existing Wall Models For Incompressible Flows 7.3 Unsteady Turbulent Inflow Conditions For Compressible Les 7.3.1 Fundamentals 7.3.2 Precursor Simulation: Advantages And Drawbacks 7.3.3 Extraction-Rescaling Techniques 7.3.4 Synthetic-Turbulence-Based Models 8 Subsonic Applications With Compressibility Effects 8.1 Homogeneous Turbulence 8.1.1 Context 8.1.2 A Few Realizations 8.1.3 Influence of The Numerical Method 8.1.4 Sgs Modeling 8.2 Channel Flow 8.2.1 Context 8.2.2 A Few Realizations 8.2.3 Influence of The Numerical Method 8.2.4 Influence of The Sgs Model 8.3 Mixing Layer 8.3.1 Context 8.3.2 A Few Realizations 8.3.3 Influence of The Numerical Method 8.3.4 Influence of The Sgs Model 8.4 Boundary-Layer Flow 8.4.1 Context 8.4.2 A Few Realizations 8.5 Jets 8.5.1 Context 8.5.2 A Few Realizations 8.5.3 Influence of The Numerical Method 8.5.4 Influence of The Sgs Model 8.5.5 Physical Analysis 8.6 Flows Over Cavities 8.6.1 Context 8.6.2 A Few Realizations 8.6.3 Influence of The Numerical Method 8.6.4 Influence of The Sgs Model 8.6.5 Physical Analysis 9 Supersonic Applications 9.1 Homogeneous Turbulence 9.2 Channel Flow 9.2.1 Context 9.2.2 A Few Realizations 9.2.3 Influence of The Numerical Method 9.2.4 Influence of The Grid Resolution 9.2.5 Influence of The Sgs Model 9.3 Boundary Layers 9.3.1 Context 9.3.2 A Few Realizations 9.3.3 Influence of The Numerical Method 9.3.4 Influence of The Grid Resolution 9.3.5 Sgs Modeling 9.4 Jets 9.4.1 Context 9.4.2 A Few Realizations 9.4.3 Influence of The Numerical Method 9.4.4 Influence of The Sgs Model 9.4.5 Physical Analysis 10 Supersonic Applications With Shock-Turbulence Interaction 10.1 Shock-Interaction With Homogeneous Turbulence 10.1.1 Phenomenology of Shock-Interaction With Homogeneous Turbulence 10.1.2 Les of Shock-Interaction With Homogeneous Turbulence 10.2 Shock-Turbulence Interaction In Jets 10.2.1 Phenomenology of Shock-Turbulence Interaction In Jets 10.2.2 Les of Shock-Turbulence Interaction In Jets 10.3 Shock-Turbulent-Boundary-Layer Interaction 10.3.1 Phenomenology of Shock-Turbulent-Boundary-Layer Interaction 10.3.2 Les of Compression-Ramp Configurations References Index |
标签 | |
缩略图 | ![]() |
书名 | 可压缩流的大涡模拟方法 |
副书名 | |
原作名 | |
作者 | (法)加尼尔 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787510058202 |
开本 | 24开 |
页数 | 276 |
版次 | 1 |
装订 | 平装 |
字数 | |
出版时间 | 2013-03-01 |
首版时间 | 2013-03-01 |
印刷时间 | 2013-03-01 |
正文语种 | 英 |
读者对象 | 研究人员,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-物理 |
图书小类 | |
重量 | 0.358 |
CIP核字 | 2013035245 |
中图分类号 | O351.2 |
丛书名 | |
印张 | 12 |
印次 | 1 |
出版地 | 北京 |
长 | 223 |
宽 | 149 |
高 | 13 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。