首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 化学计量学基础(普通高等教育化学类专业规划教材)/化学与应用化学丛书
内容
编辑推荐

本书以化学计量学的基础知识为其主线,在讲述数学基础时就试图与其化学应用直接相连,始终注意到讲解这些知识可为化学家们提供了什么样的新思路,可以解决什么样的化学问题。本书虽用英文编写,但文中出现的一些非常用英文单词皆给出中文提示,以节省学生查阅字典的时间;凡是在书中出现重要知识点的地方,本书尽量佐以问题进行提示,以引起学生的足够注意;另外,本书在必要时还尽量给出中文注释和评述,对所授知识进一步进行解释和阐述,以提高学生的认识和降低阅读的难度。

目录

Chapter 1 Introduction and Necessary Fundamental Knowledge of Mathematics

 1.1 Chemometrics: Definition and Its Brief History / 3

 1.2 The Relationship between Analytical Chemistry and Chemometrics / 4

 1.3 The Relationship between Chemometrics, Chemoinformatics and Bioinformatics / 7

 1.4 Necessary Knowledge of Mathematics / 9

1.4.1 Vector and Its Calculation / 10

1.4.2 Matrix and Its Calculation / 19

Chapter 2 Chemical Experiment Design

 2.1 Introduction / 39

 2.2 Factorial Design and Its Rational Analysis / 41

2.2.1 Computation of Effects Using Sign Tables / 44

2.2.2 Normal Plot of Effects and Residuals / 45

 2.3 Fractional Factorial Design / 47

 2.4 Orthogonal Design and Orthogonal Array / 52

2.4.1 Definition of Orthogonal Design Table / 53

2.4.2 Orthogonal Arrays and Their Inter-effect Tables / 54

2.4.3 Linear Graphs of Orthogonal Array and Its Applications / 55

 2.5 Uniform Experimental Design and Uniform Design Table / 55

2.5.1 Uniform Design Table and Its Construction / 56

2.5.2 Uniformity Criterion and Accessory Tables for Uniform Design / 59

2.5.3 Uniform Design for Pseudo-level / 60

2.5.4 An Example for Optimization of Electropherotic Separation Using Uniform Design / 61

 2.6 D-Optimal Experiment Design / 65

 2.7 Optimization Based on Simplex and Experiment Design / 68

2.7.1 Constructing an Initial Simplex to Start the Experiment Design / 69

2.7.2 Simplex Searching and Optimization / 70

Chapter 3 Processing of Analytic Signals

 3.1 Smoothing Methods of Analytical Signals / 77

3.1.1 Moving-Window Average Smoothing Method / 77

3.1.2 Savitsky-Golay Filter / 77

 3.2 Derivative Methods of Analytical Signals / 83

3.2.1 Simple Difference Method / 83

3.2.2 Moving-Window Polynomial Least-Squares Fitting Method / 84

 3.3 Background Correction Method of Analytical Signals / 89

3.3.1 Penalized Least Squares Algorithm / 89

3.3.2 Adaptive Iteratively Reweighted Procedure / 90

3.3.3 Some Examples for Correcting the Baseline from Different Instruments / 92

 3.4 Transformation Methods of Analytical Signals / 94

3.4.1 Physical Meaning of the Convolution Algorithm / 94

3.4.2 Multichannel Advantage in Spectroscopy and Hadamard Transformation / 96

3.4.3 Fourier Transformation / 99

Appendix 1.A Matlab Program for Smoothing the Analytical Signals / 108

Appendix 2.A Matlab Program for Demonstration of FT Applied to Smoothing / 112

Chapter 4 Multivariate Calibration and Multivariate Resolution

 4.1 Multivariate Calibration Methods for White Analytical Systems / 116

4.1.1 Direct Calibration Methods / 116

4.1.2 Indirect Calibration Methods / 121

 4.2 Multivariate Calibration Methods for Grey Analytical Systems / 126

4.2.1 Vectoral Calibration Methods / 127

4.2.2 Matrix Calibration Methods / 127

 4.3 Multivariate Resolution Methods for Black Analytical Systems / 129

4.3.1 Self-modeling Curve Resolution Method / 131

4.3.2 Iterative Target Transformation Factor Analysis / 134

4.3.3 Evolving Factor Analysis and Related Methods / 137

4.3.4 Window Factor Analysis / 141

4.3.5 Heuristic Evolving Latent Projections / 145

4.3.6 Subwindow Factor Analysis / 152

 4.4 Multivariate Calibration Methods for Generalized Grey Analytical Systems / 154

4.4.1 Principal Component Regression (PCR) / 156

4.4.2 Partial Least Squares (PLS) / 157

4.4.3 Leave-one-out Cross-validation / 159

Chapter 5 Pattern Recognition and Pattern Analysis for Chemical Analytical Data

 5.1 Introduction / 169

5.1.1 Chemical Pattern Space / 169

5.1.2 Distance in Pattern Space and Measures of Similarity / 171

5.1.3 Feature Extraction Methods / 173

5.1.4 Pretreatment Methods for Pattern Recognition / 173

 5.2 Supervised Pattern Recognition Methods: Discriminant Analysis Methods / 174

5.2.1 Discrimination Method Based on Euclidean Distance / 175

5.2.2 Discrimination Method Based on Mahalanobis Distance / 175

5.2.3 Linear Learning Machine / 176

5.2.4 k-Nearest Neighbors Discrimination Method / 177

 5.3 Unsupervised Pattern Recognition Methods: Clustering Analysis Methods / 179

5.3.1 Minimum Spanning Tree Method / 179

5.3.2 k-means Clustering Method / 181

 5.4 Visual Dimensional Reduction Based on Latent Projections / 183

5.4.1 Projection Discrimination Method Based on Principal Component Analysis / 183

5.4.2 SMICA Method Based on Principal Component Analysis / 186

5.4.3 Classification Method Based on Partial Least Squares / 193

标签
缩略图
书名 化学计量学基础(普通高等教育化学类专业规划教材)/化学与应用化学丛书
副书名
原作名
作者 梁逸曾//易伦朝
译者
编者
绘者
出版社 华东理工大学出版社
商品编码(ISBN) 9787562828716
开本 16开
页数 196
版次 1
装订 平装
字数 340
出版时间 2010-10-01
首版时间 2010-10-01
印刷时间 2010-10-01
正文语种
读者对象 青年(14-20岁),普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-化学
图书小类
重量 0.378
CIP核字
中图分类号 O6-04
丛书名
印张 13
印次 1
出版地 上海
260
188
10
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数 2000
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/10 8:04:15