本书以化学计量学的基础知识为其主线,在讲述数学基础时就试图与其化学应用直接相连,始终注意到讲解这些知识可为化学家们提供了什么样的新思路,可以解决什么样的化学问题。本书虽用英文编写,但文中出现的一些非常用英文单词皆给出中文提示,以节省学生查阅字典的时间;凡是在书中出现重要知识点的地方,本书尽量佐以问题进行提示,以引起学生的足够注意;另外,本书在必要时还尽量给出中文注释和评述,对所授知识进一步进行解释和阐述,以提高学生的认识和降低阅读的难度。
图书 | 化学计量学基础(普通高等教育化学类专业规划教材)/化学与应用化学丛书 |
内容 | 编辑推荐 本书以化学计量学的基础知识为其主线,在讲述数学基础时就试图与其化学应用直接相连,始终注意到讲解这些知识可为化学家们提供了什么样的新思路,可以解决什么样的化学问题。本书虽用英文编写,但文中出现的一些非常用英文单词皆给出中文提示,以节省学生查阅字典的时间;凡是在书中出现重要知识点的地方,本书尽量佐以问题进行提示,以引起学生的足够注意;另外,本书在必要时还尽量给出中文注释和评述,对所授知识进一步进行解释和阐述,以提高学生的认识和降低阅读的难度。 目录 Chapter 1 Introduction and Necessary Fundamental Knowledge of Mathematics 1.1 Chemometrics: Definition and Its Brief History / 3 1.2 The Relationship between Analytical Chemistry and Chemometrics / 4 1.3 The Relationship between Chemometrics, Chemoinformatics and Bioinformatics / 7 1.4 Necessary Knowledge of Mathematics / 9 1.4.1 Vector and Its Calculation / 10 1.4.2 Matrix and Its Calculation / 19 Chapter 2 Chemical Experiment Design 2.1 Introduction / 39 2.2 Factorial Design and Its Rational Analysis / 41 2.2.1 Computation of Effects Using Sign Tables / 44 2.2.2 Normal Plot of Effects and Residuals / 45 2.3 Fractional Factorial Design / 47 2.4 Orthogonal Design and Orthogonal Array / 52 2.4.1 Definition of Orthogonal Design Table / 53 2.4.2 Orthogonal Arrays and Their Inter-effect Tables / 54 2.4.3 Linear Graphs of Orthogonal Array and Its Applications / 55 2.5 Uniform Experimental Design and Uniform Design Table / 55 2.5.1 Uniform Design Table and Its Construction / 56 2.5.2 Uniformity Criterion and Accessory Tables for Uniform Design / 59 2.5.3 Uniform Design for Pseudo-level / 60 2.5.4 An Example for Optimization of Electropherotic Separation Using Uniform Design / 61 2.6 D-Optimal Experiment Design / 65 2.7 Optimization Based on Simplex and Experiment Design / 68 2.7.1 Constructing an Initial Simplex to Start the Experiment Design / 69 2.7.2 Simplex Searching and Optimization / 70 Chapter 3 Processing of Analytic Signals 3.1 Smoothing Methods of Analytical Signals / 77 3.1.1 Moving-Window Average Smoothing Method / 77 3.1.2 Savitsky-Golay Filter / 77 3.2 Derivative Methods of Analytical Signals / 83 3.2.1 Simple Difference Method / 83 3.2.2 Moving-Window Polynomial Least-Squares Fitting Method / 84 3.3 Background Correction Method of Analytical Signals / 89 3.3.1 Penalized Least Squares Algorithm / 89 3.3.2 Adaptive Iteratively Reweighted Procedure / 90 3.3.3 Some Examples for Correcting the Baseline from Different Instruments / 92 3.4 Transformation Methods of Analytical Signals / 94 3.4.1 Physical Meaning of the Convolution Algorithm / 94 3.4.2 Multichannel Advantage in Spectroscopy and Hadamard Transformation / 96 3.4.3 Fourier Transformation / 99 Appendix 1.A Matlab Program for Smoothing the Analytical Signals / 108 Appendix 2.A Matlab Program for Demonstration of FT Applied to Smoothing / 112 Chapter 4 Multivariate Calibration and Multivariate Resolution 4.1 Multivariate Calibration Methods for White Analytical Systems / 116 4.1.1 Direct Calibration Methods / 116 4.1.2 Indirect Calibration Methods / 121 4.2 Multivariate Calibration Methods for Grey Analytical Systems / 126 4.2.1 Vectoral Calibration Methods / 127 4.2.2 Matrix Calibration Methods / 127 4.3 Multivariate Resolution Methods for Black Analytical Systems / 129 4.3.1 Self-modeling Curve Resolution Method / 131 4.3.2 Iterative Target Transformation Factor Analysis / 134 4.3.3 Evolving Factor Analysis and Related Methods / 137 4.3.4 Window Factor Analysis / 141 4.3.5 Heuristic Evolving Latent Projections / 145 4.3.6 Subwindow Factor Analysis / 152 4.4 Multivariate Calibration Methods for Generalized Grey Analytical Systems / 154 4.4.1 Principal Component Regression (PCR) / 156 4.4.2 Partial Least Squares (PLS) / 157 4.4.3 Leave-one-out Cross-validation / 159 Chapter 5 Pattern Recognition and Pattern Analysis for Chemical Analytical Data 5.1 Introduction / 169 5.1.1 Chemical Pattern Space / 169 5.1.2 Distance in Pattern Space and Measures of Similarity / 171 5.1.3 Feature Extraction Methods / 173 5.1.4 Pretreatment Methods for Pattern Recognition / 173 5.2 Supervised Pattern Recognition Methods: Discriminant Analysis Methods / 174 5.2.1 Discrimination Method Based on Euclidean Distance / 175 5.2.2 Discrimination Method Based on Mahalanobis Distance / 175 5.2.3 Linear Learning Machine / 176 5.2.4 k-Nearest Neighbors Discrimination Method / 177 5.3 Unsupervised Pattern Recognition Methods: Clustering Analysis Methods / 179 5.3.1 Minimum Spanning Tree Method / 179 5.3.2 k-means Clustering Method / 181 5.4 Visual Dimensional Reduction Based on Latent Projections / 183 5.4.1 Projection Discrimination Method Based on Principal Component Analysis / 183 5.4.2 SMICA Method Based on Principal Component Analysis / 186 5.4.3 Classification Method Based on Partial Least Squares / 193 |
标签 | |
缩略图 | ![]() |
书名 | 化学计量学基础(普通高等教育化学类专业规划教材)/化学与应用化学丛书 |
副书名 | |
原作名 | |
作者 | 梁逸曾//易伦朝 |
译者 | |
编者 | |
绘者 | |
出版社 | 华东理工大学出版社 |
商品编码(ISBN) | 9787562828716 |
开本 | 16开 |
页数 | 196 |
版次 | 1 |
装订 | 平装 |
字数 | 340 |
出版时间 | 2010-10-01 |
首版时间 | 2010-10-01 |
印刷时间 | 2010-10-01 |
正文语种 | 汉 |
读者对象 | 青年(14-20岁),普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-化学 |
图书小类 | |
重量 | 0.378 |
CIP核字 | |
中图分类号 | O6-04 |
丛书名 | |
印张 | 13 |
印次 | 1 |
出版地 | 上海 |
长 | 260 |
宽 | 188 |
高 | 10 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | 2000 |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。