《变分学中的多重积分》(作者莫里)包含了大量科研人员学习多重积分变分问题和双曲偏微分方程问题的材料。书中不仅是作者科研成果的总结,更是同时代该领域或者相关领域的专业人士的巨大贡献。本书无疑会成为该领域科研人员的标准差参考书。本书的主要读者是对数学分析有一定基础的人员,分析专业的学生将会受益匪浅。
图书 | 变分学中的多重积分 |
内容 | 编辑推荐 《变分学中的多重积分》(作者莫里)包含了大量科研人员学习多重积分变分问题和双曲偏微分方程问题的材料。书中不仅是作者科研成果的总结,更是同时代该领域或者相关领域的专业人士的巨大贡献。本书无疑会成为该领域科研人员的标准差参考书。本书的主要读者是对数学分析有一定基础的人员,分析专业的学生将会受益匪浅。 目录 Chapter 1 Introduction 1.1. Introductory remarks 1.2. The plan of the book: notation 1.3. Very brief historical remarks 1.4. The euler equations 1.5. Other classical necessary conditions 1.6. Classical sufficient conditions 1.7. The direct methods 1.8. Lower semicontinuity 1.9. Existence 1.10. The differentiability theory. introduction 1.11. Differentiability; reduction to linear equations Chapter 2 Semi-classical results 2.1. Introduction 2.2. Elementary properties of harmonic functions 2.3. Weyl's lemma 2.4. Poisson's integral formula; elementary functions; GREEN'S functions 2.5. Potentials 2.6. Generalized potential theory; singular integrals 2.7. The calderon-zygmund inequalities 2.8. The maximum principle for a linear elliptic equation of the second order Chapter 3 The spaces Hmp and Hmp0 3.1. Definitions and first theorems 3.2. General boundary values; the spaces hmp0 (g); weak convergence 3.3. The dirichlet problem 3.4. Boundary values 3.5. Examples; continuity; some sobolev lemmas 3.5. Miscellaneous additional results 3.7. Potentials and quasi-potentials; generalizations Chapter 4 Existence theorems 4.1. The lower-semicontinuity theorems of SERRIN 4.2. Variational problems with f = f(p); the equations (i. t 0. t 3) with n = i, bi=0, aα = aα(p) 4.3. The borderline cases k = v 4.4. The general quasi-regular integral Chapter 5 Differentiability of weak solutions 5.1. Introduction 5.2. General theory; V >2 5.3. Extensions Of The DE giorgi-nash-moser results; V >2 5.4. The case V=2 5.5. Lp and SCHAUDER estimates 5.6. The Equation a.▽2u+b.▽u+cu-λu=f 5.7. Analyticity of the solutions of analytic linear equations 5.8. Analyticity of the solutions of analytic, non-linear, elliptic equations 5.9. Properties of the extremals; regular cases 5.10. The extremals in the case 1 <k < 2 5.11. The THEORY OF LADYZENSAYA AND URAL'TSEVA 5.12. A class of non-linear equations Chapter 6 Regularity theorems for the solutions of general elliptic systems and boundary value problems 6.1. Introduction 6.2. Interior estimates for general elliptic systems 6.3. Estimates near the boundary; coerciveness 6.4. Weak solutions 6.5. The existence theory for The DIRICHLET problem for strongly elliptic systems 6.6. The analyticity of the solutions of analytic systems of linear elliptic equations 6.7. The analyticity of the solutions of analytic nonlinear elliptic systems 6.8. The differentiability of the solutions of non-linear elliptic systems; weak solutions; a perturbation theorem Chapter 7 A variational method in the theory of harmonic integrals 7.1. Introduction 7.2. Fundamentals; The GAFFNEY-GARDING inequality 7.3. The variational method 7.4. The decomposition theorem. final results for compact manifolds with-out boundary 7.5. Manifolds with boundary 7.6. Differentiability at the boundary 7.7. Potentials, the decomposition theorem 7.8. Boundary value problems Chapter 8 Theδ-NEUMANN problem on strongly pseudo-convex manifolds 8.1. Introduction 8.2. Results. Examples. The analytic embedding theorem 8.3. Some important formulas 8.4. The HXLBERT space results 8.5. The local analysis 8.6. The smoothness results Chapter 9 Introduction to parametric integrals; two dimensional problem, 9.1. Introduction. parametric integrals 9.2. A lower semi-continuity theorem 9.3. Two dimensional problems; introduction; the conformal mapping of surfaces 9.4. The problem of plateau 9.5. The general two-dimensional parametric problem Chapter 10 The higher dimensional PLATEAU problems 10.1. Introduction 10.2. v surfaces, their boundaries, and their HAUSDORFF measures 10.3. The topological results of ADAMS 10.4. The minimizing sequence; the minimizing set 10.5. The local topological disc property 10.6. The REIFENBERG cone inequality 10.7. The local differentiability 10.8. Additional results of federer concerning LEBESGUE v-area Bibliography Index |
标签 | |
缩略图 | ![]() |
书名 | 变分学中的多重积分 |
副书名 | |
原作名 | |
作者 | (美)莫里 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787510058318 |
开本 | 24开 |
页数 | 506 |
版次 | 1 |
装订 | 平装 |
字数 | |
出版时间 | 2013-03-01 |
首版时间 | 2013-03-01 |
印刷时间 | 2013-03-01 |
正文语种 | 英 |
读者对象 | 青年(14-20岁),研究人员,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.636 |
CIP核字 | |
中图分类号 | O176 |
丛书名 | |
印张 | 22 |
印次 | 1 |
出版地 | 北京 |
长 | 228 |
宽 | 150 |
高 | 20 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。