首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 代数(第3版)(精)
内容
编辑推荐

《代数(第3版)》由Serge Lang所著。

As I see it, the graduate course in algebra must primarily prepare studentsto handle the algebra which they will meet in all of mathematics: topology,partial differential equations, differential geometry, algebraic geometry, analysis,and representation theory, not to speak of algebra itself and algebraic numbertheory with all its ramifications. Hence I have inserted throughout references topapers and books which have appeared during the last decades, to indicate someof the directions in which the algebraic foundations provided by this book areused; I have accompanied these references with some motivating comments, toexplain how the topics of the present book fit into the mathematics that is tocome subsequently in various fields; and I have also mentioned some unsolvedproblems of mathematics in algebra and number theory. The abc conjecture isperhaps the most spectacular of these.

目录

Part One The Basic Objects of Algebra

Chapter I Groups

1. Monoids 3

2. Groups 7

3. Normal subgroups 13

4. Cyclic groups 23

5. Operations of a group on a set 25

6. Sylow subgroups 33

7. Direct sums and free abelian groups 36

8. Finitely generated abelian groups 42

9. The dual group 46

10. Inverse limit and completion 49

11. Categories and functors 53

12. Free groups 66

Chapter II Rings

1. Rings and homomorphisms  83

2. Commutative rings 92

3. Polynomials and group rings 97

4. Localization 107

5. Principal and factorial rings 111

Chapter III Modules

1. Basic definitions 117

2. The group of homomorphisms 122

3. Direct products and sums of modules 127

4. Free modules 135

5. Vector spaces 139

6. The dual space and dual module 142

7. Modules over principal rings 146

8. Euler-Poincar6 maps 155

9. The snake lemma 157

~ 10. Direct and inverse limits 159

Chapter IV Polynomials

1. Basic properties for polynomials in one variable 173

2. Polynomials over a factorial ring 180

3. Criteria for irreducibility 183

4. Hilbert's theorem 186

5. Partial fractions 187

6. Symmetric polynomials 190

7. Mason-Stothers theorem and the abc conjecture 194

8. The resultant 199

9. Power series 205

Part Two Algebraic Equations

Chapter V Algebraic Extensions

1. Finite and algebraic extensions 225

2. Algebraic closure 229

3. Splitting fields and normal extensions 236

4. Separable extensions 239

5. Finite fields 244

6. Inseparable extensions 247

Chapter VI Galois Theory

1. Galois extensions 261

2. Examples and applications 269

3. Roots of unity 276

4. Linear independence of characters 282

5. The norm and trace 284

6. Cyclic extensions 288

7. Solvable and radical extensions 291

8. Abelian Kummer theory 293

9. The equation Xn - a = 0 297

10. Galois cohomology  302

11. Non-abelian Kummer extensions 304

12. Algebraic independence of homomorphisms 308

13. The normal basis theorem 312

14. Infinite Galois extensions 313

15. The modular connection 315

Chapter VII Extensions of Rings

1. Integral ring extensions 333

2. Integral Galois extensions 340

3. Extension of homomorphisms 346

Chapter VIII Transcendental Extensions

1. Transcendence bases 355

2. Noether normalization theorem 357

3. Linearly disjoint extensions 360

4. Separable and regular extensions 363

5. Derivations 368

Chapter IX Algebraic Spaces

1. Hilbert's Nullstellensatz 377

2. Algebraic sets, spaces and varieties 381

3. Projections and elimination 388

4. Resultant systems 401

5. Spec of a ring 405

Chapter X Noetherian Rings and Modules

 1. Basic criteria 413

2. Associated primes 416

3. Primary decomposition 421

4. Nakayama's lemma 424

5. Filtered and graded modules 426

6. The Hilbert polynomial 431

7. Indecomposable modules 439

Chapter XI Real Fields

1. Ordered fields 449

2. Real fields 451

3. Real zeros and homomorphisms 457

Chapter XII Absolute Values

1. Definitions, dependence, and independence 465

2. Completions 468

3. Finite extensions 476

4. Valuations 480

5. Completions and valuations 486

6. ,Discrete valuations 487

7. Zeros of polynomials in complete fields 491

Part Three Linear Algebra and Representations

Chapter XIII Matrices and Linear Maps

1. Matrices 503

2. The rank of a matrix 506

3. Matrices and linear maps 507

4. Determinants 511

5. Duality  522

6. Matrices and bilinear forms 527

7. Sesquilinear duality 531

8. The simplicity of SL2(F)/±1 536

9. The group SLn(F), n ≥ 3 540

Chapter XIV Representation of One Endomorphism

 1. Representations 553

2. Decomposition over one endomorphism 556

3. The characteristic polynomial 561

Chapter XV Structure of Bilinear Forms

1. Preliminaries, orthogonal sums 571

2. Quadratic maps 574

3. Symmetric forms, orthogonal bases 575

4. Symmetric forms over ordered fields 577

5. Hermitian forms 579

6. The spectral theorem (hermitian case) 581

7. The spectral theorem (symmetric case) 584

8. Alternating forms 586

9. The Pfaffian 588

10. Witt's theorem 589

11. The Witt group  594

Chapter XVI The Tensor Product

1. Tensor product 601

2. Basic properties 607

3. Flat modules 612

4. Extension of the base 623

5. Some functorial isomorphisms 625

6. Tensor product of algebras 629

7. The tensor algebra of a module 632

8. Symmetric products 635

Chapter XVII Semisimplicity

1. Matrices and linear maps over non-commutative rings 641

2. Conditions defining semisimplicity 645

3. The density theorem 646

4. Semisimple rings 651

5. Simple rings 654

6. The Jacobson radical, base change, and tensor products 657

7. Balanced modules 660

Chapter XVIII Representations of Finite Groups

1. Representations and semisimplicity 663

2. Characters 667

3. 1-dimensional representations 671

4. The space of class functions 673

5. Orthogonality relations 677

6. Induced characters 686

7. Induced representations 688

8. Positive decomposition of the regular character 699

9. Supersolvable groups 702

10. Brauer's theorem 704

11. Field of definition of a representation 710

12. Example: GL2 over a finite field 712

Chapter XIX The Alternating Product

1. Definition and basic properties 731

2. Fitting ideals  738

3. Universal derivations and the de Rham complex 746

4. The Clifford algebra 749

Part Four Homological Algebra

Chapter XX General Homology Theory

1. Complexes 761

2. Homology sequence 767

3. Euler characteristic and the Grothendieck group 769

4. Injective modules 782

5. Homotopies of morphisms of complexes 787

6. Derived functors 790

7. Delta-functors 799

8. Bifunctors 806

9. Spectral sequences 814

Chapter XXI Finite Free Resolutions

1. Special complexes 835

2. Finite free resolutions 839

3, Unimodular polynomial vectors 846

4. The Koszul complex 850

Appendix 1 The Transcendence of e and π

Appendix 2 Some Set Theory

Bibliography

Index

标签
缩略图
书名 代数(第3版)(精)
副书名
原作名
作者 Serge Lang
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787506271844
开本 24开
页数 914
版次 1
装订 精装
字数
出版时间 2007-10-01
首版时间 2007-10-01
印刷时间 2007-10-01
正文语种
读者对象 研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 1.248
CIP核字
中图分类号
丛书名
印张 39
印次 1
出版地 北京
229
157
44
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2004-5053
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/16 21:04:01